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Using a tamoxifen-inducible time-course ChIP-sequencing (ChIP-
seq) approach, we show that the ubiquitous transcription factor
SP1 has different binding dynamics at its target sites in the human
genome. SP1 very rapidly reaches maximal binding levels at some
sites, but binding kinetics at other sites is biphasic, with rapid half-
maximal binding followed by a considerably slower increase to
maximal binding. While ∼70% of SP1 binding sites are located at
promoter regions, loci with slow SP1 binding kinetics are enriched
in enhancer and Polycomb-repressed regions. Unexpectedly, SP1
sites with fast binding kinetics tend to have higher quality and
more copies of the SP1 sequence motif. Different cobinding factors
associate near SP1 binding sites depending on their binding kinet-
ics and on their location at promoters or enhancers. For example,
NFY and FOS are preferentially associated near promoter-bound
SP1 sites with fast binding kinetics, whereas DNA motifs of ETS
and homeodomain proteins are preferentially observed at sites
with slow binding kinetics. At promoters but not enhancers, pro-
teins involved in sumoylation and PML bodies associate more
strongly with slow SP1 binding sites than with the fast binding
sites. The speed of SP1 binding is not associated with nucleosome
occupancy, and it is not necessarily coupled to higher transcrip-
tional activity. These results with SP1 are in contrast to those of
human TBP, indicating that there is no common mechanism affect-
ing transcription factor binding kinetics. The biphasic kinetics at
some SP1 target sites suggest the existence of distinct chromatin
states at these loci in different cells within the overall population.

transcription factor j DNA binding protein j gene regulation j chromatin j
DNA binding kinetics

Transcription factor binding to target DNA sequences is the
critical step for regulating gene expression in response to

environmental and developmental cues. As human cells encode
∼2,000 specific DNA binding transcription factors, combinatorial
binding of these proteins to enhancer and promoter-proximal ele-
ments is the basis of the extraordinary diversity in gene expres-
sion patterns (1). A typical transcription factor binds thousands
of target sites in human cells (2–5), and catalogs of such binding
events for many transcription factors have been described (6–8).
As expected, regulatory elements are bound by multiple tran-
scription factors, typically localized to regions spanning several
hundreds of base pairs.

The dynamic behavior of transcription factors is described by
parameters such as diffusion in the nucleus and kinetics of bind-
ing and dissociation from DNA (9, 10). Microscopic observa-
tions using fluorescence recovery after photobleaching (FRAP)
reveal high mobility and rapid turnover of transcription factor
binding to the genome in a timescale of seconds (11, 12). Recent
advances in imaging technologies enable tracking the behavior
of transcription factors in the nucleus, which includes target
search and chromatin association at the single molecule level
(13–16). These imaging studies indicate that binding dynamics
are extremely rapid, on the order of seconds or a few minutes at
most. Binding kinetics of transcription factors can change in
response to environmental conditions (17, 18), implying a con-
nection between the binding dynamics and transcriptional regu-
lation. However, these studies do not address binding dynamics

on individual target sites on a genomic scale and whether differ-
ences in binding kinetics have transcriptional consequences.

The combination of high-throughput techniques and chro-
matin immunoprecipitation (ChIP) of inducibly expressed tran-
scription factors can capture genome-wide information about
the binding dynamics of a transcription factor at individual
binding sites (17, 19–23). In yeast, analyses of the TATA bind-
ing protein (TBP) and the DNA binding repressor/activator
protein Rap1 show considerable variation in residence times
among target sites that is poorly correlated with the level of
binding (21, 22). Longer residence time (i.e., slower turnover)
for Rap1 is coupled to higher levels of transcription (21).

In previous work, we developed an inducible time-course
ChIP-sequencing (ChIP-seq) approach and found that slow
exchange of human TBP binding at promoters is correlated
with strong transcriptional activity of the downstream gene
(20). As in yeast, human TBP displays fast binding kinetics at
RNA polymerase (Pol) II promoters, slow kinetics at Pol III
promoters, and very slow kinetics at the Pol I promoter (20 and
22). In addition, yeast and human TBP show widely variable
binding kinetics at Pol II promoters that are not correlated with
binding levels. However, promoters with slow TBP binding
kinetics in human cells frequently contain TATA consensus
motifs and have higher levels of transcription (20), whereas the
opposite is the case for yeast promoters (22).

TBP is a general transcription factor whose associations with
Pol I, Pol II, and Pol III promoters requires a large number of
other general transcription factors. As such, TBP is very
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different from the large number of DNA binding transcription
factors that selectively associate with promoter-proximal and
promoter-distal sequences. Binding dynamics of any DNA
binding transcription factor has not been addressed on the
genomic scale in human cells, so the similarities and differences
with TBP binding dynamics are unknown.

SP1 (specificity protein 1), among the first identified tran-
scription factors that bind specific DNA sequences, is ubiqui-
tously expressed and essential in mammalian cells (24–27). It
binds GC-box sequences found in 27% of human promoter-
proximal regions (�150 bp to +50 bp to the transcription start
site [TSS]), and it functions as a transcriptional activator
(28, 29). SP1 motifs are strongly enriched in promoter-proximal
regions, and some DNA binding proteins that show similar
binding patterns or motif co-occurrences are known (30–33).
Here, we use our ERT2-based inducible time-course ChIP-seq
method (20) to analyze SP1 binding dynamics at target sites
throughout the human genome. The parameters that influence
binding dynamics of SP1 are very different from those of human
TBP.

Results
ERT2-Based Inducible Time-Course ChIP in Human Cells. To examine
the dynamics of SP1 binding to its genomic target sites, we
established a knockin K562 cell line expressing SP1-ERT2-
3HA, a derivative of SP1 containing the ligand binding domain
of estrogen receptor (ERT2) and three copies of the HA epi-
tope fused to the C terminus of SP1, from the endogenous SP1
locus (Fig. 1A). The ERT2 domain keeps the tagged SP1 pro-
tein in the cytoplasm prior to induction. The strain also
expresses endogenous SP1 from another copy of the same chro-
mosome (Fig. 1B). Upon the addition of tamoxifen and hence
activation of the ERT2 domain (Fig. 1C), the fusion protein
(green) rapidly translocates to the nucleus and competes with
endogenous SP1 (purple) for its target sites. More than 50% of
the fusion protein translocates to the nucleus within 15 min of
tamoxifen addition and virtually all of it translocates within 30
min (Fig. 1D), whereupon it binds to target sites (Fig. 1E). In
contrast, and as an internal control for each sample, total SP1
binding (endogenous SP1 + SP1-ERT2-3HA) does not change
upon tamoxifen treatment (Fig. 1F and SI Appendix, Fig. S1),
indicating that the induced SP1-ERT2-3HA protein replaces
endogenous SP1 molecules initially associated with their target
sites. The magnitude of SP1-ERT2 binding throughout the time
course is consistent with the amount of nuclear SP1-ERT2
(Fig. 1G).

Different SP1 Binding Dynamics on Target Loci. The binding kinet-
ics at individual sites over the tamoxifen-induced time course
determines whether a given site is a slow or fast binding site
(Fig. 1C). To analyze SP1 binding dynamics on a genomic scale,
we performed ChIP-seq throughout the time course after tamox-
ifen induction of SP1-ERT2 nuclear translocation. SP1-ERT2
binding levels increase after tamoxifen induction (Fig. 2A), and
the levels at each time point (except for 0 min) are strongly cor-
related among samples (SI Appendix, Fig. S2A). The level of
SP1-ERT2 binding determined here is well correlated to binding
of endogenous SP1 in the same K562 cell line determined else-
where (6) (SI Appendix, Fig. S2B), indicating the binding fidelity
of the fusion protein. The level of nuclear SP1-ERT2 is similar
between the 10- and 90-min time points (reflecting rapid nuclear
translocation), but it increases (due to new synthesis) at the 360-
and 1,440-min time points (SI Appendix, Fig. S2C). As expected,
the overall level of SP1-ERT2 binding (average of ChIP-seq
peaks) is very strongly correlated to the amount of nuclear
SP-ERT2 protein (SI Appendix, Fig. S2 D and E).

To classify SP1 binding sites based on their binding dynamics,
we employed k-medoids clustering algorithms and subdivided
SP1 binding sites into four classes (Fig. 2B). These four classes
represent the different increasing speed of SP1-ERT2 ChIP-seq
signals (Fig. 2C). The binding kinetics of the fast and middle
fast classes of SP1 binding sites are similar to the increase in
SP1-ERT2 protein levels (Fig. 2C), indicating that binding
occurs and reaches the maximal level very quickly. However,
binding kinetics at the slow class of SP1 sites is biphasic, with
half-maximal binding occurring ∼30 min after induction (∼15 min
for the middle slow class) and considerably more time needed to
reach maximal binding.

Slow SP1 Binding Sites Are Enriched at Enhancers and Other
Nonpromoter Regions. Based on chromatin states (32), we classi-
fied SP1 binding sites (peak summit ±250 bp) according to
their location in enhancers, promoters, gene bodies, Polycomb-
repressed, and other genomic regions. In line with previous
reports, 68% of SP1 target sites are in promoter regions, 23%
are in enhancer regions, 3.3% are in gene bodies, 4.1% are in
Polycomb-repressed (H3-K27me3 containing) regions, and
1.7% are in other regions (Fig. 3A). Interestingly, the percent-
age of slow binding SP1 sites in enhancers and Polycomb-
repressed regions is higher than the percentage in the faster
classes (Fig. 3B). In accordance with this observation, the histone
modifications around the SP1 peak summits for the slow class of
target sites show an increased ratio of H3-K4me1:H3-K4me3
(a signature of enhancers; Fig. 3C) as well as increased levels of
H3-K27me3 and EZH2 (signatures of Polycomb-repressed
regions; Fig. 3D). Higher EZH2 and H3-K27me3 signals were
observed when promoters and enhancers were analyzed sepa-
rately (SI Appendix, Fig. S3).

Fast SP1 Binding Sites Tend to Contain Multiple SP1 Binding Motifs.
SP1 binds to a consensus motif known as the GC box, and
some genomic loci have multiple copies of this motif. Interest-
ingly, loci with faster SP1 binding dynamics tend to have more
copies of the SP1 consensus motif than the slow class (Fig. 4A).
For example, 18% of the fast SP1 binding sites have four or
more motifs as compared to only 2% of the slow SP1 sites. In
addition, the quality of the SP1 motifs (determined by match to
position weight matrix) is lower in the slow class of sites (Fig. 4
B and C). These results are similar even when enhancer and
promoter regions are analyzed separately (SI Appendix, Fig. S4
A–D). In addition, the AT content around the peak summit is
higher at the slow SP1 sites as compared to fast sites (Fig. 4D).
This higher ATcontent at slow SP1 sites is more pronounced at
enhancers than promoters. Unexpectedly, slow SP1 binding
sites have higher nucleosome occupancy in enhancer (but not
promoter) regions (Fig. 4E).

The SP1 consensus motif contains CpG dinucleotides and
thus CpG islands often overlap with SP1 binding sites. Consistent
with its higher AT content, slow class SP1 sites show less overlap
with CpG islands than other classes (SI Appendix, Fig. S4E).
Methylation rates of CpG islands overlapping with fast class SP1
sites tend to be slightly higher compared to slow class sites in
promoter regions (SI Appendix, Fig. S4F), which suggests that
stable SP1 binding helps protect DNA from methylation. ATAC-
seq and DNase-seq data also indicate that the DNA accessibility
to slow SP1 binding sites in enhancer regions is lower than the
other classes but not so prominent in promoter regions (Fig. 4 F
and G).

Cobinding Transcription Factors Are Associated with SP1 Binding
Dynamics. As SP1 often binds together with other transcription
factors, we searched the entire set of known sequence motifs
that are overrepresented in the fast or slow SP1 binding classes
in promoter regions. As expected from the results in Fig. 4A,
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the SP1 motif is overrepresented in the fast class (Fig. 5A and
Dataset S1). The consensus motif of NFY (A and B subunits)
is also enriched in the fast class, consistent with the
co-occurrence of the SP1 and NFY motifs in many human pro-
moters (34, 35). In accordance with these results, occupancies
of SP1 and the related SP2 and SP3 are higher in the fast class
than in the slow class (Fig. 5B). FOS, a member of the AP-1
family, has a co-occurrence pattern with SP1 and NFY (35, 36),
and it also shows enrichment in the faster classes (SI Appendix,
Fig. S5A). Another AP-1 family member, JUN, does not show
enrichment for the faster classes. Even when selected sites
within each class are chosen to equalize SP1 binding levels,

NFY and FOS binding levels are higher in the faster classes
(SI Appendix, Fig. S5 B and C). Interestingly, although the KLF
family motifs are similar to the SP1 motif and enriched in the
fast class of SP1 sites (Fig. 5A), binding of KLF5, KLF16, and
KLF1 is higher in the slow class of SP1 sites than in the fast
class (Fig. 5B). Similarly, the MZF1 binding signal is higher in
the slow class (Fig. 5B).

On the other hand, the consensus motifs of ETS or homeo-
box family members are more frequently observed in the slow
class of SP1 sites (Fig. 5C and Dataset S1), and most of these
proteins show higher occupancies in the slow class (Fig. 5D). In
enhancer regions, a different set of the transcription factor
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motifs are overrepresented in the fast class or slow class, espe-
cially for the slow class (Fig. 6 and Dataset S1). ChIP-seq data
show that SP1, SP2, SP3, and ZNF740 are favored in the fast
SP1 class (Fig. 6B), whereas GATA3, GATA2, and FOXJ2 are
favored in the slow SP1 class (Fig. 6D).

PML and SUMOylated Proteins Preferentially Accumulate on Slow
SP1 Binding Sites in Promoter Regions. SP1 undergoes sumoyla-
tion (37), which is promoted by PML, a member of TRIM/
RBCC family of proteins that binds to the SUMO E2 ligase
UBC9 (38). PML bodies are a subnuclear compartment that
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recruits many sumoylated proteins, including SP1 (38, 39). At
promoters, ChIP signals of PML, SUMO1-, or SUMO2-
conjugated proteins and UBC9 are significantly higher in the

slow SP1 binding sites than the faster binding sites (Fig. 7A).
This tendency is not observed at SP1 binding sites in enhancer
regions (SI Appendix, Fig. S6). Gene Ontology (GO) analysis
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Fig. 6. Cobinding transcription factors enriched in the fast or slow SP1 binding classes at enhancers. (A) Top ranked examples of transcription factor
binding motifs enriched in the faster classes (fast and middle fast) compared to the slow class. (B) Means of ChIP signal of the indicated transcription fac-
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shows that different terms are overrepresented in each class
(Fig. 7B and Dataset S2; the fast class was excluded because
none of the categories is beyond the false discovery rate [FDR]
cutoff of <0.01). GO terms suggestive of PML function (e.g.,
stress responses, a protein modification process such as ubiqui-
tin or ubiquitin-like protein, cellular response to DNA dam-
age), frequently appear in a list of top significantly enriched
annotations in the slow class, while different GO categories,
such as regulation of transcription, are overrepresented in mid-
dle fast class (Fig. 7B).

Promoters with Fast SP1 Binding Dynamics and Enhancers with Slow
Dynamics Have Lower Transcriptional Activity. Active histone
(H3-K27Ac) modifications around SP1 binding sites in enhancer
regions tend to be lower in slow SP1 sites, and conversely,
repressive histone (H3-K27me3) modifications are higher
(Fig. 8A). Consistent with this, levels of Pol II occupancy and
transcriptional activity (assessed by PRO-seq) are lower at the
SP1 binding sites and the closest genes of slow class sites in
enhancer regions as compared to the other classes (Fig. 8B
and SI Appendix, Fig. S7 A and C). On the other hand, levels of
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both active and repressive histone modifications around SP1
binding sites in promoter regions are higher in slow class sites
(Fig. 8C), and higher Pol II recruitment and transcriptional
activity are observed (Fig. 8D and SI Appendix, Fig. S7 B and
D). These results indicate that SP1 binding dynamics differently
correlate with Pol II recruitment depending on whether the
binding sites locate in promoter or enhancer regions.

Discussion
Molecular Distinctions between SP1 Target Sites with Fast or Slow
Dynamics. Genome-scale analysis of binding dynamics of tran-
scription factors at individual sites has been performed for
Rap1 and TBP in yeast cells and for TBP in human cells
(20–22). For each of these transcription factors, binding dynam-
ics differ among target sites in a manner that is poorly corre-
lated with the overall level of binding. Here, we show that the
sequence-specific transcription factor SP1 also displays differ-
ent binding dynamics among its target sites in human cells.
However, the parameters that govern differential binding
dynamics among SP1 sites differ from those of TBP and Rap1.

SP1 sites showing fast or slow binding dynamics have distinct
molecular properties. First, slow SP1 binding sites are relatively
enriched at enhancers and Polycomb-repressed regions, and
they are relatively depleted at promoters. Second, fast SP1
binding sites tend to have more copies of the SP1 recognition
motif than slow sites. Third, fast SP1 binding sites tend to have
higher motif strength. Fourth, fast and slow SP1 binding sites
are associated with different sets of other transcription factors
bound to nearby locations. Thus, differential binding dynamics
of SP1 at its genomic target sites can arise for multiple reasons.

Transcription factors bind target sites with different affinities
based on their match to a consensus motif, best defined by a
position weight matrix. It is generally assumed that on-rates do

not vary much among different sites and hence that intrinsic
affinity is determined primarily by off-rates; i.e., strong binding
sites have slower off-rates. In this regard, human TBP binding
dynamics are strongly influenced by the off-rate because the
quality of the motif at Pol II promoters (i.e., match to the
TATA consensus) is associated with relatively slow binding
dynamics (20).

In contrast to the general assumption and to the results on
TBP, multiple SP1 motifs and higher motif strength are
enriched at fast SP1 binding sites in human cells. This unex-
pected result suggests that SP1 binding dynamics in vivo are
strongly influenced by the on-rate, not just the strength of
the intrinsic protein–DNA interaction. In this view, the induced
SP1 goes more rapidly to sites with chromatin features and/or
cobinding proteins that enhance the accessibility, thereby over-
riding the contributions of the intrinsic SP1–DNA interaction.

SP1 binding dynamics are affected by other factors bound
near, but distinct from SP1 motifs. Fast SP1 binding sites in
promoter regions are associated with strong NFY and FOS
binding at nearby locations, providing further evidence that
SP1 binding dynamics are favored by interactions that increase
SP1 binding. KLF family proteins are highly related to SP1
(40), but KLF proteins (KLF5, KLF16, and KLF1) are
enriched at slow, not fast SP1 binding sites. Perhaps the KLF
proteins and SP1 have different motif preferences, such that
weaker SP1 motifs in slow SP1 binding sites are preferable for
binding by KLF proteins.

Alternatively, slow SP1 binding sites often have ETS family
transcription factors bound nearby. SP1 and ETS proteins
interact and can synergistically activate downstream genes
(41–43). Perhaps ETS factors, unlike NFY, stabilize the interac-
tion of SP1 with its target site to a sufficient extent such that
the off-rate becomes the key factor influencing the dynamics.
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In addition, EZH2, the enzymatic component of PRC2 Poly-
comb complex, and its corresponding H3-K27me3 histone mod-
ification are enriched at slow SP1 sites. Lastly, the stronger
associations of PML, SUMO, and the E2 SUMO-conjugating
enzyme UBC9 at slow class sites imply a connection between
SP1 binding dynamics and nuclear sublocalization. In this
regard, assembly of PML nuclear bodies is modulated by
stresses (39, 44), and genes associated with these processes are
enriched in the slow class of SP1 binding sites.

Recent imaging studies indicate that the association of tran-
scription factors (including SP1) with their target sites is
extremely dynamic, on the order of seconds and rarely longer
than a minute (13–16). These observations are in apparent con-
trast with the biphasic binding kinetics at slow SP1 sites, in
which the level of binding is only half-maximal at the 15- to
30-min time point. The simplest explanation for this observation
is that a subset of cells within the population have chromatin
states or other properties at slow SP1 sites that inhibit binding.
This subset of cells would require longer times for SP1 binding,
either due to the inhibition per se or to a time-dependent switch
between chromatin states that allows more efficient binding.

Relationship of SP1 Binding Dynamics to Transcription and Biological
Processes. Binding dynamics among SP1 sites are correlated with
transcription in a different manner than binding dynamics of
TBP and Rap1. Slow binding dynamics of yeast Rap1 and yeast
and human TBP are associated with lower nucleosome occu-
pancy and higher transcriptional activities of downstream genes
(21, 22), supporting the idea that transcription factors compete
with nucleosomes to bind their target sites. In contrast, slow SP1
binding sites in enhancer regions show higher nucleosome occu-
pancy and lower transcriptional activity than observed at fast
SP1 sites. This result might be explained by the ability of SP1 to
bind to the target sites occluded by nucleosomes (45), such that
nucleosome occupancy does not affect SP1 binding dynamics.
Alternatively, the higher nucleosome occupancy might reflect an
inhibitory state in the subset of cells with biphasic kinetics at
slow SP1 sites. Whatever the molecular basis for this contrasting
behavior of SP1 at enhancers, these results indicate that there
are no common rules for linking binding dynamics of transcrip-
tion factors to transcriptional activity.

Interestingly, the function of SP3, a protein related to SP1
with similar DNA binding specificity, depends on the number

of SP1 binding motifs in the promoter. SP3 works as an activa-
tor for promoters containing a single SP1 binding motif, but it
represses transcription from promoters containing multiple SP1
binding motifs by inhibiting SP1-dependent transcription acti-
vation (46). SP3 forms more stable complexes on promoters
with multiple SP1 motifs than those with a single SP1 motif,
and this leads to efficient competition with SP1 for promoter
binding (47). This property of SP3 at sites with multiple SP1
motifs might result in the faster dynamics of SP1 at these pro-
moters as opposed to promoters with single SP1 motifs. Tran-
scription activities of downstream genes of fast class promoters
tend to be lower than that of the slower classes, which may
reflect the transcription repression by SP3 through the inhibi-
tion of the stable SP1 binding.

The distinction between SP1 binding sites in the nonpro-
moter and nonenhancer regions is unknown. It has been sug-
gested that some transcription factors mark tissue-specific
enhancers in undifferentiated cells to prevent assembly of a
repressive chromatin environment (48, 49). In this view, SP1
associated with slow binding sites might mark tissue-specific
genes or enhancers that are not active in the K562 cell line
used here. SP1 binds to the enhancer of the thymocyte-specific
gene Ptcra in mouse embryonic stem cells for preventing DNA
methylation (50). Whether this mechanism is involved in the
regulation of other enhancers remains to be elucidated.

Materials and Methods
Detailed information on plasmid construction, cell culture and fractionation,
ChIP-seq sample preparation, PCR primers (Dataset S3), ChIP-seq data analysis
and relationship to published ChIP-seq data (listed in Dataset S4), defining cat-
egories of SP1 binding sites, and motif and GO analysis are described in SI
Appendix, Materials and Methods. All raw and processed sequencing data
generated in this paper have been submitted to the NCBI Gene Expression
Omnibus (GEO) under accession no. GSE162811.

Data Availability. DNA sequence (ChIP-seq) data have been deposited in
GEO (GSE162811).
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