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Using an inducible, inflammatory model of breast cellular trans-
formation, we describe the transcriptional regulatory network
mediated by STAT3, NF-κB, and AP-1 factors on a genomic scale.
These proinflammatory regulators form transcriptional complexes
that directly regulate the expression of hundreds of genes in on-
cogenic pathways via a positive feedback loop. This transcriptional
feedback loop and associated network functions to various ex-
tents in many types of cancer cells and patient tumors, and it is
the basis for a cancer inflammation index that defines cancer types
by functional criteria. We identify a network of noninflammatory
genes whose expression is well correlated with the cancer inflam-
matory index. Conversely, the cancer inflammation index is nega-
tively correlated with the expression of genes involved in DNA
metabolism, and transformation is associated with genome insta-
bility. We identify drugs whose efficacy in cell lines is correlated
with the cancer inflammation index, suggesting the possibility of
using this index for personalized cancer therapy. Inflammatory
tumors are preferentially associated with infiltrating immune cells
that might be recruited to the site of the tumor via inflammatory
molecules produced by the cancer cells.
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Inflammation is a hallmark of cancer and plays important reg-
ulatory roles during cell transformation, invasion, metastasis,

and treatment resistance (1–3). An inflammatory reaction during
tumor development occurs in nearly all solid malignancies (4).
Preexisting inflammation promotes subsequent cancer development,
accounting for 15 ∼ 20% of cancer deaths (3). Inflammation also
plays critical roles in immunosuppression (2). For example, STAT3
promotes the expression of PD-L1 and PD-L2 in cancer cells,
suppressing immune cell activity (5).
Tumor-associated inflammation results from both an intrinsic

pathway, in which mutations in cancer cells activate inflamma-
tory gene expression, and an extrinsic pathway, in which cytokines
and chemokines secreted by tumor-associated immune cells create
inflammatory microenvironments (3). Oncogenes can trigger a gene
expression cascade, resulting in activation or overexpression of
proinflammatory transcription factors such as NF-κB, STAT3, and
AP-1, with the resulting production of cytokines and chemokines (1,
2, 6). For example, NF-κB signaling pathway is activated upon
activation of oncogenes RAS and MYC, through activation of IL-
1β (6–8), and the proto-oncoprotein Src kinase can directly phos-
phorylate and activate STAT3 (9).
In previous work, we have described an inducible model of

cellular transformation in which transient activation of v-Src onco-
protein converts a nontransformed breast epithelial cell line into a
stably transformed state within 24 h (6, 10). The stably trans-
formed cells form foci and colonies in soft agar, show increased
motility and invasion, form mammospheres, and confer tumor
formation in mouse xenografts (6, 10). This epigenetic switch
between stable nontransformed and transformed states is mediated
by an inflammatory positive feedback loop involving NF-κB and

STAT3 (6, 11). By integrating motif analysis of DNase hypersensitive
regions with transcriptional profiling, we found that>40 transcription
factors are important for transformation and identified putative
target sites directly bound by these factors (12).
A few transcriptional regulatory circuits involved in this

transformation model have been identified, and these are important
in some other cancer cell types and human cancers (6, 11, 13, 14).
During transformation, STAT3 acts through preexisting nucleosome-
depleted regions bound by FOS, and expression of several AP-1
factors is altered in a STAT3-dependent manner (15). However,
the connection between STAT3, NF-κB, and AP-1 factors as well
as the underlying transcriptional regulatory circuits has not been
described on the whole-genome level.
Here, we define the transcriptional network mediated by the

combined action of NF-κB, STAT3, and AP-1 factors (JUN, JUNB,
and FOS) on a genomic scale in this breast transformation model. In
contrast to previous studies (12, 15), this network is defined by genes
that are induced during transformation by the binding of NF-κb,
STAT3, and AP-1 factors to common target sites either through their
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“cancer inflammation index” that defines cancer types by func-
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inflammatory molecules, might help recruit immune cells to the
site of the tumor. Thus, detailed analysis of an artificial trans-
formation model uncovers the molecular basis of an inflam-
matory network relevant for many forms of human cancer.
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cognate motifs or via protein–protein interactions. Based on this
common NF-κb, STAT3, and AP-1 network, we develop a cancer
inflammation index to define cancer types, both in cell lines and
in patients, by functional criteria. As this inflammation index is based
on the common regulatory network, it is distinct from, and more
specific than, indices based simply on gene expression profiles that
arise from multiple regulatory inputs. In addition, we identify many
noninflammatory genes whose expression is positively or negatively
correlated with the cancer inflammation index, leading to the ob-
servation that inflammation is linked functionally to other aspects of
cancer as well as genomic instability. Lastly, we show that inflam-
matory tumor samples preferentially contain contaminating immune
and stromal cells from the tumor microenvironment, consistent
with the idea that immune cells might be recruited to the site of
the tumor via inflammatory molecules produced by the cancer cells.

Results
Colocalization of STAT3, NF-κB, and AP-1 Factors on Target Sites in Vivo.
During transformation, NF-κb, STAT3, and AP-1 (JUN, JUNB,
and FOS) levels increase in the nucleus (SI Appendix, Fig. S1A). In
accord with previous results using chemical inhibitors and siRNA
knockdowns (6), CRISPR-cas9–mediated knockouts of these factors
(SI Appendix, Fig. S1B) cause decreased transformation as assayed
by growth under conditions of low attachment (16) (SI Appendix,
Fig. S1C). Our previous ChIP-seq analysis mapped protein-binding
sites to nucleosome-depleted regions before and after (24-h ta-
moxifen treatment) transformation (15) but did not provide more
detailed localization.
The ChIP-seq data reveals many target sites bound by STAT3

(89,764 sites), NF-κB (56,539 sites), and AP-1 factors (95,958 sites
for JUNB, 152,443 sites for FOS, and 118,245 sites for JUN) (SI
Appendix, Figs. S1D and S2A). Less than 17% of factor binding sites
are located in promoter regions, and the majority of sites are lo-
cated in other regulatory regions, including ∼30% that are in active
enhancers (SI Appendix, Fig. S2A). As expected from the heteromeric
nature of AP-1 factors, binding levels of JUN, JUNB, and FOS
are well correlated with each other (Pearson correlation coef-
ficiencies ≥ 0.83), which are nearly comparable to biological

replicates (SI Appendix, Fig. S2B). Based on this, we grouped the
AP-1 factors together in most subsequent analyses. Also as
expected, STAT3 binding sites strongly overlap with FOS binding
sites (15) and with the other AP-1 factors (89% of STAT3 binding
sites) (SI Appendix, Fig. S3A). In addition, 89% of NF-κB bind-
ing sites overlap with AP-1 factors (SI Appendix, Fig. S3A). Thirty-
eight percent of STAT3, NF-κB, and AP-1 sites are located in the
same cis-regulatory regions (CRRs; SI Appendix, Fig. S3A), which is
far more frequent than expected by chance (P < 10−200; χ2 test). De-
spite the strong colocalization, STAT3, NF-κb, and AP-1 factors
can independently bind to specific sites (SI Appendix, Fig. S3A),
and the pairwise correlation values are lower than the correla-
tion values between biological replicates (SI Appendix, Fig. S3B).
Additional results suggest that STAT3, NF-κB, and AP-1

factors cobind to target sites as a multiprotein complex. Most impor-
tantly, the median distance of peak summits for all pairwise com-
binations of AP-1 factors, STAT3, and NF-κB ranges between
15 and 30 bp, and these values are comparable to those obtained
for biological replicates of the relevant individual factors (Fig.
1A). The indistinguishable binding profiles of STAT3, NF-κB, and
AP-1 factors on target sites indicate that these proteins all associate
(either directly or indirectly) with the same DNA sequence. In this
regard, the analytical method used here revealed that the NF-YA
and NF-YB subunits of the heteromeric transcription factor NF-Y
bind asymmetrically to their target site, with a 15-bp separation
between peak binding of the individual subunits (17). Consistent
with these common binding profiles, coimmunoprecipitation
experiments show that STAT3, NF-κB, and AP-1 factors interact
with each other in the nucleus (Fig. 1B).

Sequence Motifs Associated with Binding of STAT3, NF-κb, and AP-1
Factors. To address which factors are primarily responsible for
binding site specificity, we performed motif analysis on sequences
around peak summits. As expected, 60% of AP-1 factor binding
peaks contain an AP-1 motif (SI Appendix, Fig. S3C). Interestingly,
38% of STAT3 binding sites and 30% of NFKB1 sites also have an
AP-1 motif, while 24% of STAT3 sites have a STATmotif and 16%
NFKB1 sites have a NF-κBmotif (SI Appendix, Fig. S3C). Furthermore,

A
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B

Fig. 1. Features of transcription factor binding. (A)
Distance between peak summits of indicated factors
locating in the same cis-regulatory region. (B) Coim-
munoprecipitation experiment showing the interac-
tions between FOS, JUNB, STAT3, and NF-κB in the
nucleus of nontransformed (N) and transformed (T)
cells. IgG IP was used as the control. (C) Distribution
of AP-1, STAT, and NF-κb consensus motif around factor
peak summits. As the control, we randomly shuffled
AP-1, STAT, and NF-κb consensus motifs and plotted
the motif distribution around peak summits.
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the AP-1 motif is well located in STAT3 and NFKB1 peak summits
(Fig. 1C). We did not find significant colocalization of AP-1, STAT,
and NF-κB motifs in the same CRRs. These results indicate that a
significant fraction of STAT3 and NF-κB binding is mediated
through the interaction with AP-1 factors. In contrast, only a small
minority of AP-1 binding sites contain a STAT or NF-κb motif (Fig.
1C and SI Appendix, Fig. S3C), and STAT and NF-κb motifs show
modest enrichment around AP-1 peak summits (Fig. 1C). Thus,
binding of AP-1 factors occurs predominantly via interactions with
AP-1 motifs, presumably reflecting a direct protein–DNA interac-
tion. In contrast, in addition to directly binding via their motifs,
STAT3 and NF-κb can also bind to AP-1 motifs, presumably via
protein–protein interactions with AP-1 factors. However, we did
not observe significant motif differences in AP-1 sites bound by AP-
1 factors alone or those cobound with STAT3 and/or NF-κb.

STAT3, NF-κb, and AP-1 Factors Coregulate Key Genes in Various
Oncogenic Pathways. Cobinding of STAT3, NF-κB, and AP-1
factors regulates gene expression and chromatin status. Genes
up-regulated during transformation (Fig. 2A) tend to have in-
creased binding of STAT3, NFKB1, JUN, JUNB, and FOS at
promoters/enhancers (Fig. 2B). Furthermore, isogenic cell lines
lacking individual factors can block the up-regulation of a subset
of genes during transformation (Fig. 2C), with the STAT3
knockout showing the most drastic effects. As there are multiple
members of the NF-κb and AP-1 families, it is likely that the weaker
effect on transcription is due to redundancy among family members.
With respect to chromatin structure, regions bound by increasing
numbers of these factors tend to have higher accessibility and
acetylation levels (SI Appendix, Fig. S4A, B). In addition, differ-
ential binding levels of STAT3, NFKB1, and AP-1 factors during

transformation are positively correlated with dynamic chromatin
accessibility (Pearson correlation coefficient ≥ 0.44) (SI Appendix,
Fig. S4C), and open chromatin regions bound by more factors tend
to show increased accessibility (SI Appendix, Fig. S4D).
We identified 1,461 genes that are common targets of STAT3,

NFKB1, JUN, JUNB, and FOS and that show increased binding
of at least four factors (>1.5 fold) during transformation and
down-regulation upon at least four factor knockouts (Dataset
S1). These genes are enriched [Benjamini–Hochberg false dis-
covery rate (FDR) < 0.005] in cancer-related processes (SI Appendix,
Fig. S5A), and they include genes involved in cell signaling cascades
(e.g., RAB13, IF116, ZAK), inflammatory response (e.g., IL1B,
IL1R1, SERPINA1), cell proliferation (e.g., CSF3, E2F7, E2F8)
regulation of apoptosis (e.g., PIM1, CARD6, BCL2L1), angiogenesis
(e.g., RHOB, CEGFC, EPAS1), and cell migration/metastases (e.g.,
LAMB3, CXCL3, and PLAU) (Fig. 2D and SI Appendix, Fig. S5B).
Cancer stem cells are generated during the transformation process in
our model (18), and STAT3, NF-κb, and AP-1 factors activate key
genes (e.g., CD44, CXCR1, and ITGA7) mediating cancer stem cell
formation. Cancer metabolism is a key component of oncogen-
esis (19), and important metabolic enzyme genes (e.g., HK2 and
NAMPT) are also regulated by these factors (Fig. 2D and SI
Appendix, Fig. S5B). Thus, STAT3, NF-κb, and AP-1 are major
factors involved in tumor-promoting inflammation, and they
bind to and promote the expression of key genes in various on-
cogenic pathways (SI Appendix, Fig. S5B).

The Inflammatory Positive Feedback Loop That Promotes Transformation
Is Extensive. In previous work, we described a few specific regulatory
circuits that constitute an inflammatory positive feedback loop re-
quired for transformation in this experimental model (6, 11, 15).
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RAB31 3.1 24.3 18.8 10.7 10.7 11.6 -3.1 -1.2 -0.8 -1.1 -2.7
IFI16 1.4 9.2 2.4 0.9 1.0 1.9 -1.7 -0.8 -0.3 -0.6 -0.9

FN1 0.1 7.8 10.3 0.4 1.7 3.3 -3.0 -4.7 -4.1 -5.5 -0.2
SNAI2 0.6 5.1 2.1 4.7 1.2 1.6 -0.1 -3.3 -2.9 -2.2 0.2

CXCL3 1.7 2.2 4.0 0.4 1.2 1.0 -4.9 -1.9 -2.9 -3.8 -0.3
LAMB3 1.2 2.2 1.8 2.0 1.4 2.3 -1.4 -1.5 -1.4 -1.4 -1.2

E2F7 0.6 10.3 11.7 4.8 6.8 6.6 -0.7 -0.8 -0.2 -2.3 -0.2
CSF3 1.9 3.6 3.3 0.9 1.2 2.1 -4.7 -1.7 -1.3 -1.9 -2.0

CD44 0.9 18.2 12.9 4.5 4.2 6.5 -1.1 -0.9 -0.7 -1.0 -0.4
CXCR1 4.9 5.6 0.3 1.9 2.9 3.5 -8.4 -1.0 -1.0 -0.1 -3.2

IL1B 1.4 14.7 7.3 2.7 5.1 7.9 -0.2 -1.9 -1.7 -2.4 -0.8
CCL20 2.4 4.6 1.8 2.4 2.4 2.8 -4.4 -1.6 -1.2 -2.3 -3.4

VEGFC 0.8 22.3 11.5 8.3 13.5 9.3 -0.2 -0.6 -0.8 -1.6 -0.2
EPAS1 1.3 24.0 15.4 10.5 12.6 9.9 -2.0 -1.3 -0.8 -1.1 -1.4

PIM1 1.6 9.0 4.3 3.3 4.2 4.2 -0.4 -1.4 -0.7 -0.8 -2.4
CASP4 1.5 4.5 1.6 0.6 0.9 3.4 -1.8 -0.5 -0.6 -1.2 -1.4

ARNTL2 1.5 9.4 6.2 3.3 2.8 7.1 -1.6 -1.5 -0.6 -1.9 -1.8
NFKB2 0.5 5.7 2.9 5.1 4.4 4.6 -0.9 -1.8 -0.8 -0.8 -0.4

HK2 0.9 15.9 9.0 8.2 2.3 4.3 -1.7 -1.6 -0.8 -1.1 -0.8
NAMPT 3.1 19.0 7.9 4.4 4.2 8.7 -4.3 -1.3 -1.2 -1.4 -2.1

B C

Fig. 2. Cobinding and common targets of STAT3, NF-κb, and AP-1 factors. (A-C) For each gene that is continuously up-regulated during transformation (A),
fold changes of factor binding levels in promoters/enhancers (B), and gene expression changes after factor knockouts at 24 h after transformation (C) are
shown. (D) Examples of common target genes of STAT3, NFKB1, and AP-1 factors regulating different oncogenic pathways. The fold changes of expression
during transformation, factor binding level changes in promoters/enhancers, and gene expression changes after factor knockout at 24 h after transformation
are shown. The degree of up-regulation (red) and down-regulation (blue) is indicated by the color intensity.
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Here, we show that this positive feedback loop is far more extensive.
In particular, during transformation, STAT3, NF-κΒ (NFKB1 and
NFKB2), and AP-1 factors (JUN, JUNB, FOS, FOSL1, FOSL2, and
ATF3) are transcriptionally up-regulated as are many upstream
regulators in the IL6/STAT3, IL1/NF-κB, and TNF/AP-1 signaling
pathways, including IL1 (IL1A and IL1B) and IL1 receptors (IL1R1,
IL1R2, IL1RAP, and IL1RL1), IL6 (IL6 and LIF) and IL6 receptor,
TNF and TNF receptors (TNFRSF10D, TNFRSF11B, and
TNFRSF21), and JAK2 and MAP kinases (MAP3K8 andMAP4K4)
(Fig. 3A). These genes are all common targets of STAT3, NFKB1, and
AP-1 factors, with increased factor binding in promoters/enhancers
(Fig. 3B). Thus, the essence of the loop is that STAT3, NFKB1, and
AP-1 directly activate upstream regulators that trigger the activation
of intracellular signaling cascades, phosphorylate the transcription
factors, and promote their nuclear localization and transcriptional
activation. In accord with previous studies on IL6 (6), reducing the
activation levels of JAK2, JNK, and IL1 receptors via inhibitors or
antagonists results in decreased transformation efficiency (SI Ap-
pendix, Fig. S6). For subsequent analyses, we define 27 genes directly
involved in the IL6/STAT3, IL1/NF-κb, and TNF/AP-1 signaling
pathways (Fig. 3A) as the core positive feedback loop that maintains
the transformed state.

A Cancer Inflammation Index To Measure the Inflammation Level of a
Cancer Cell Line. The Cancer Cell Line Encyclopedia (CCLE) data-
base contains gene expression data for 1,036 human cancer cell lines
from over 20 developmental lineages (20). The expression levels of
27 genes in the IL6/STAT3, IL1/NF-κB, and JNK/AP-1 pathways
across those cancer cell lines (Fig. 4 A and B) are positively correlated
beyond chance expectation (median of Spearman’s rank correlation
coefficient = 0.17; Wilcoxon rank sum test P value <10−200) (Fig. 4C),
consistent with the inflammatory loop being active in different types
of cancers. In contrast, genes regulated by STAT3 only and immune
response genes do not show significant correlation across cancer
cell lines (Fig. 4C). As expected from the extraordinary diversity of
cancers, some cancer cell lines have transcriptional profiles much
more similar to those the ER-Src model than others.
To measure the inflammation level for each cancer cell line,

we developed a scoring system called the cancer inflammation
index, which is calculated as the expression values of 27 genes
(normalized to the median expression levels in the 1,036 cell

lines) in the positive feedback loop (Dataset S2). Importantly,
this index is not simply based on a subset of genes that are induced
during transformation, but rather genes that are direct targets of
the STAT3/NF-κB/AP-1 regulatory network. The inflammatory
levels gradually increase during ER-Src transformation (Fig.
4D), and they are highly variable (>fivefold) among different
cancer cell lines (Fig. 4A). Similarly, in a fibroblast cell trans-
formation model involving stepwise addition of the SV40 and
RAS oncogenes to immortalized fibroblast, the inflammatory
levels increase upon transformation (Fig. 4E).
On average, head and neck as well as pancreatic cancer cell

lines are most inflammatory, while the autonomic ganglia and
blood cancer cell lines are least inflammatory (Fig. 4F). However,
cancer cell lines from the same developmental lineage can show high
variance in inflammatory levels, which is correlated with their ge-
netic subtypes. For example, cell lines from nonsmall cell lung
cancers are more inflammatory than those of small cell lung cancers
(Fig. 4G), and triple negative breast cancer cell lines with p53 mu-
tations are more inflammatory than other subtypes (Fig. 4H).

The Inflammatory Loop in Tumors from Cancer Patients. Although
cancer cell lines are derived from tumors, long-term propagation
of cell lines under artificial conditions raises the possibility that
cell line data might be misleading with respect to cancer. We
addressed the relevance of the inflammatory loop in human
cancers by using RNA-seq data in the Cancer Genome Atlas
database (21) to calculate the inflammation index in human tu-
mors (Dataset S3). In accord with the results in cancer cell lines,
genes in the IL6/STAT3, IL1/NF-κB, and JNK/AP-1 inflamma-
tory loop are coexpressed in human breast tumors (Fig. 5A).
Similarly, triple negative breast tumors are more inflammatory
than other types of breast tumors (Fig. 5B). Moreover, the median
cancer inflammatory index value of all tumor samples from a
given developmental lineage is highly correlated with that of cells
lines from the same developmental lineage (Pearson correlation
coefficient= 0.82; P value<10−5) (Fig. 5C). As we combined all tumors
for a given lineage, it seems unlikely that this analysis is significantly
compounded by differences in the tumor microenvironment. These
observations indicate that, with respect to inflammation and gene
regulation profiles, cancer cell lines are good models for tumors, and
the inflammatory loop is relevant for many types of human cancer.
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Fig. 5. The inflammatory levels are variable among cancers with different developmental lineages and genetic subtypes. (A) Heatmap showing the relative
expression levels of 27 genes in IL6/STAT3, IL1/NF-κb, and TNF/NF-κb pathways in breast cancer patient samples from the TCGA database. The samples were
sorted by the cancer inflammation index (SEs shown in gray color). (B) Inflammatory indexes in genetic subtypes of breast cancer patients. (C) Correlation
between inflammatory levels between cancer cell lines and patient tissue samples among different developmental lineages. The median cancer inflammation
index value of patient samples from the same developmental lineage indicates its inflammatory level. (D) Inflammatory index and expression levels of of
STAT3/NF-κb/AP-1 target genes using RNA-seq data from single cells from melanoma patient samples. Each point represents the expression from a single cell
from the indicated tumor. (E) The correlation between inflammatory index and expression levels of target genes of STAT3/NF-κb/AP1 across single cells from
melanoma patients.
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To avoid potential contributions of noncancer cells in patient
samples, we analyzed published gene expression levels in single
cancer cells from melanoma patient samples (22). The inflammatory
loop and target genes are expressed at variable levels (>10-fold)
across single cells in various tumor samples (Fig. 5D). The median
inflammatory level in the sample MGH29 is fourfold higher than
MGH26 (Fig. 5D). The inflammatory index shows significant cor-
relation with the expression level of STAT3/NF-κB/AP-1 target
genes (Pearson correlation coefficiency = 0.58, P value <2.2e-16)
(Fig. 5E). These direct measurements of gene expression levels of
individual cancer cells from tumors indicates that the inflammatory
loop and associated network is used in cancer patients.

Identification of Noninflammatory Genes Whose Expression Is Correlated
to the Cancer Inflammation Index.Previous analyses of the ER-Src model
identified oncogenically relevant genes based on differential gene
expression upon transformation and/or direct regulation by NF-κB,

STAT3, and AP-1 factors. However, it is highly likely that this
approach will miss critical genes that are part of the transformation
process. As an alternative approach, for every gene, we calculated
the Spearman correlation coefficient between its expression level
and the inflammation index across cancer cell lines for various de-
velopmental lineages. The correlation values are significantly con-
served among developmentally distinct cancers, again consistent with a
widespread role of the inflammatory loop and it target genes (Fig. 6A).
Genes showing higher positive correlation with the cancer

inflammation index are more likely to be direct transcriptional
targets of STAT3/NF-κB/AP1 and tend to be up-regulated during
transformation (Fig. 6 B–D). We identified 1,303 genes showing
significant positive correlation of expression with the cancer in-
flammation index (median Spearman’s rank correlation coefficient
across cancer cell types >0.18, false discovery rate <0.005) (Fig.
6B). Twenty-eight percent of these genes are common and direct
targets of STAT3, NF-κB, and AP-1 factors (SI Appendix, Fig. S5B).
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Aside from genes involved in the inflammatory response, these genes
are enriched in biological pathways such as angiogenesis, cell
proliferation, apoptosis, intracellular signaling cascade, and cell
migration (Fig. 7 and SI Appendix). These pathways, which are
defined by the inflammatory index and not transformation per se,
are in excellent accord with the pathways accord with pathways
activated during ER-Src transformation (SI Appendix, Fig. S5B),
thereby providing independent evidence that the inflammatory loop
and oncogenic pathways uncovered in the ER-Src cell transformation
model are relevant for different types of human cancer.

A Correlation Between Inflammation and Genome Instability in Cancer Cell
Lines. One-thousand three hundred sixty-nine genes show negative
correlation between expression levels and the cancer inflammation index,
and these are enriched in pathways including DNA metabolic process,
DNA replication, DNA repair, and cell cycle (Benjamin FDR< 10−13).
This observation suggests that oncogenic-associated inflammation is
inversely related to genome stability, and indeed the genes showing
most negative correlation (e.g., MSH2, FANCF, BRCA1) are regulators
of genome instability. Interestingly, the genes related to genome in-
stability are not transcriptionally regulated duringER-Src cell transformation.

A

B

D

E

C

Fig. 7. Correlation between inflammation index, cancer progression index, and tumor purity. (A) Correlation between tumor purity, levels of infiltrating
immune cells (CD8+/CD4+ T cells and macrophages), and cancer inflammation index of breast cancer patient samples. (B) Randomly picked breast tumor
samples with different inflammation levels and similar purity were examined for gene expression levels in the indicated oncogenic pathways that are direct
targets of STAT3/NF-κb/AP-1 and also show significant positive correlation of expression with the cancer inflammation index in Fig. 6B. Genes associated with
immune/inflammatory response were removed from the analyses. (C) Randomly picked tumor samples with different inflammation levels and similar purity
were examined for expression levels of target genes of STAT3/NF-κb/AP1 in lung cancers, head and neck cancers, glioblastomas, and melanoma. (D) Cor-
relation between inflammation index and cancer progression index. (E) Correlation between tumor purity and cancer progression index.
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To examine the link between inflammation and genome in-
stability, we performed micronucleus staining of cells during ER-
Src transformation. Indeed, more cells contain micronuclei as
transformation processes (Fig. 6 E and F), with 2.2% cells con-
taining micronuclei after 72 h after induction of transformation
compared with virtually no cells before transformation. Thus, the
inflammation-mediated process of transformation is associated
with decreased genome stability.

Inflammatory Tumor Samples Contain Increased Levels of Noncancer
Cells. As shown above, the inflammation indices of cancer cell
lines for a particular cancer type are highly correlated with the
corresponding tumor samples (Fig. 5C). However, unlike sam-
ples from cancer cell lines, tumor samples also contain immune
and stromal cells from the tumor microenvironment in addition
to the cancer cells. Such tumor impurity complicates the analysis
of gene expression profiles of tumor cells, particularly as immune
cells are also inflammatory. We therefore took several ap-
proaches to disentangle the inflammatory nature of cancer cells
from other cells in a tumor.
First, for numerous tumor samples we analyzed the relation-

ship between the cancer inflammation index, tumor purity
(fraction of cancer cells in a sample), and infiltrating immune
cells, which has been estimated from cancer-specific genetic
mutations or cell type-specific gene signatures (23, 24). In general,
the inflammation level increases as the tumor purity decreases and
the fraction of infiltrating immune cells increase (Fig. 7A and SI
Appendix, Fig. S8 A–G). However, triple negative breast tumors
have higher inflammatory levels than those of other genetic sub-
types, although all of these forms of breast cancer have similar
purity levels (SI Appendix, Fig. S8H). The higher inflammatory
level of triple negative breast tumors is consistent with the results
in the corresponding cancer cell lines (Fig. 5B), indicating that it
reflects the intrinsic properties of the cancer cells and not the
degree of tumor purity.
Second, we selected breast patient samples with similar levels

of tumor purity but different levels of inflammation (divided into
four bins) and analyzed expression of noninflammatory genes
whose expression is strongly correlated with the inflammatory
index (Fig. 7B). Expression of these transformation-related, but
noninflammatory, genes, which are direct targets of STAT3/NF-
κb/AP1 and are involved in angiogenesis, apoptosis, and cell
migration, increases as the cancer inflammation index increases.
Similar results are observed in all other types of cancer we ex-
amined such as melanoma, lung, head and neck, and glioblas-
tomas (Fig. 7C and SI Appendix, Fig. S9). These results indicate
that the inflammatory loop and associated network are active in
various types of cancers, although we can’t exclude the formal
possibility that nonmalignant cells in the various samples might
be in different states.
Third, we created a “progression index” that is strongly cor-

related with the inflammatory index (Fig. 7D), but is based on
98 genes that regulate “migration/metastasis,” “apoptosis,” and
“angiogenesis,” but are not currently annotated as inflammatory
or part of the immune response. This progression index should
reflect the regulatory circuits involved in cellular transformation
and tumor formation, but not normal immune cells. Indeed, across
the large set of tumor samples, the score of noninflammatory index
inversely correlated with tumor purity (Fig. 7E). All of these ob-
servations indicate that tumors containing inflammatory cancer
cells preferentially contain noncancer cells. Thus, tumor-associated
inflammation level is positively correlated with the complexity of
microenvironment and the presence of immune cells.

Identifying Drugs Whose Efficacy Is Correlated with the Cancer
Inflammation Index. The Genomics of Drug Sensitivity in Cancer
measured the drug efficacy of 267 compounds in 1,001 cancer cell
lines (25). Based on the RNA expression levels, we calculated the
inflammation index of the cell lines. Then for each compound, we
calculated the Spearman correlation coefficiency between inflam-
mation index and the drug potency indicated by the half maximal

inhibitory concentration (IC50) values across the cell lines (SI Ap-
pendix, Fig. S10 and Dataset S4). Interestingly, a few compounds
showed significantly better effect in inhibiting the growth of in-
flammatory cells (P value <10−5), such as inhibitors targeting MEK1/
MEK2 (Trametinib and Refametinib), HSP90 (Tanespimycin), and
HER2/EGFR (Lapatinib). Also, inflammatory cells require higher
doses of HDAC inhibitors and bromodomain family inhibitors to
achieve the growth inhibition effect. These observations suggest the
potential use of the cancer inflammation index for personalized
cancer treatment.

Discussion
NF-κB, STAT3, and AP-1 Factors via Their Common Targets Mediate
the Positive Feedback Loop Controlling Inflammatory Cancers. In the
ER-Src cellular transformation model, a transient inflammatory
stimulus mediates an epigenetic switch from a stable nontransformed
cell to a stable transformed cell (6). Epigenetic switches are the basis
of multicellular development, and they occur by activating a positive
feedback loop that maintains the altered state. In the ER-Src model,
Src activates the inflammatory transcription factors STAT3 and NF-
κB that form the basis of the inflammatory feedback loop that is
required for maintenance of the transformed state (6, 11, 12, 15).
Here, we show that AP-1 factors play a critical role in the in-

flammatory feedback loop. AP-1 factors are not only important for
transformation, but they form complexes with STAT3 and/or NF-κB
that bind target sites. Specifically, these factors coimmunoprecipitate,
and their binding profiles are coincident at many target sites. Most,
and perhaps all, of the sites where cobinding occurs contain AP-1
motifs, suggesting that the AP-1 factors directly interact with DNA,
whereas STAT3 and NF-κB are often recruited via interactions with
the AP-1 factors. At some sites, STAT3 and NF-κB bind via their
own motifs in the absence of AP-1 factors. At present, it is unclear
whether AP-1, NF-κB, and STAT3 can form a ternary complex at
individual sites or if NF-κB and STAT3 form independent complexes
with AP-1 factors at these sites.
In addition to their roles in inflammation per se, STAT3, NF-

κB, and AP-1 work together to regulate key genes in oncogenic
pathways such as angiogenesis, apoptosis, cell migration, and
epithelial to mesenchymal transition. Expression of many genes
in these pathways is induced upon transformation in a manner
that is linked to increased binding of all these factors. Moreover,
expression of many common genes is reduced upon knockouts of
individual factors, indicating that all of these factors contribute
to expression of these genes. Our identification of a common
STAT3/NF-κB/AP-1 network is distinct from, but not inconsistent
with, previous observations that STAT3 and NF-κB have different
(i.e., nonoverlapping) binding sites and gene expression effects during
the transformation process (15).
The positive feedback loop elucidated here is considerably

more complex than previously described, and it is maintained in
two distinct ways. The key transcription factors directly bind and
activate the expression of each other, thereby reinforcing the
core transcriptional state. This mutual coregulation of key tran-
scription factors is similar to what occurs in muscle development
(MyoD and related factors), embryonic stem cells (Nanog, Oct4),
and presumably all epigenetic states. In addition, these transcrip-
tion factors directly regulate nearly all upstream components in the
IL6/STAT3, IL1/NF-κΒ, and TNF/AP-1 signaling pathways, thereby
maintaining the activity of the individual factors and hence the gene
regulatory pattern. Thus, this extensive positive feedback loop repre-
sents a coherent regulatory system in which numerous interconnected
components stably maintain a common, yet complex, transcriptional
program.

The Inflammatory Gene Signature as an Approach to Type Human
Cancers. Historically, cancer types were classified by their develop-
mental origin as well as by crude cellular phenotypes. More recently,
cancers have been classified by the genetic mutations that drive the
oncogenic state. Such classification, together with drugs tar-
geted to specific mutations, has been the primary basis for the
idea of personalized medicine approaches to cancer treatment.
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Here, we develop a functional approach to classify human can-
cers that utilizes gene expression signatures, specifically a cancer
inflammation index based on the STAT3/NF-κB/AP-1 network.
Importantly, this index is based on an integrated regulatory network
and hence is significantly different from indices based solely on
transcriptional profiles that arise from multiple regulatory inputs.
Overall, expression levels of the 27 key genes that make up the

cancer inflammation index are strongly correlated with each
other. Not only does this observation provide further support for
the coherence of the feedback loop, but it suggests that the loop
and associated network functions to various degrees in different
cancer cell lines and tumors. Transformed cell lines have a higher
cancer inflammation index than observed with nontransformed cells,
consistent with a general role of inflammation in cancer. However,
there is a wide range of inflammation scores among various cancers
that occurs in developmentally unrelated cancers. Using data from
the Cancer Genome Atlas, we did not observe a significant corre-
lation between the cancer inflammation index and any particular
mutation or the total mutation number. Importantly, the inflamma-
tion indices of cell lines and tumors with similar developmental or-
igins are strongly related, suggesting its relevance for human disease.
We identified drugs whose efficacy correlates with the cancer in-
flammation index, suggesting that determining the inflammation in-
dex of tumors from individual cancer patients might be useful for
choosing drugs for personalized therapy.

Inflammatory Cancers May Preferentially Recruit Immune Cells to the
Tumor Site. Patient tumor samples contain cancer cells and im-
mune (and other noncancer) cells, all of which contribute to the
transcriptional profile. Interestingly, over a large number of tumor
samples, there is an inverse relationship between the inflammatory
index and the estimated degree of sample purity. In principle, this
relationship could merely reflect the fact that immune cells also
express many inflammatory genes, which could significantly con-
tribute to the observed cancer inflammation index of the sample.

We attempted to distinguish the contributions of cancer and
immune cells to the transcriptional profile by analyzing many
noninflammatory genes (either in specific pathways or as an
overall index) whose expression is very strongly correlated with
the inflammatory index and hence to the STAT3, NF-κB, AP-1
regulatory network. These observations suggest a dynamic in-
terplay between cancer cells and immune cells that is linked to
the cancer inflammation index of the cancer cells in the sample.
We propose that cytokines and chemokines secreted by the
cancer cells attract immune cells to their vicinity of the tumor,
thereby resulting in a less pure tumor sample. In addition, these
cytokines and chemokines secreted by the cancer cells also
help activate the inflammatory gene expression program in
immune cells. Thus, we propose that the mutual and perhaps
synergistic functional interactions between cancer cells and
immune cells can create an inflammatory microenvironment
in a manner that depends on the inflammatory properties of the
cancer cells.

Materials and Methods
Detailed information on cell lines, generation of CRISPR knockouts, Western
blotting, micronucleus assays, ChIP-seq, DNA-seq, and RNA-seq to determine
chromatin states and map transcription factor binding sties, analyzing
transcriptional profiles in cancer cell lines (CCLE) and cancer patients (TCGA
database), calculation of the cancer inflammation and cancer progression
indices, and gene ontology analyses are described in SI Appendix, Materials
and Methods. Sequencing data have been deposited in the National Cancer
for Biotechnology Information Gene Expression Omnibus with accession
numbers GSE115597, GSE115598, and GSE115599.
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