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SUMMARY

Eukaryotic promoter regions are frequently diver-
gently transcribed in vivo, but it is unknown whether
the resultant antisense RNAs are a mechanistic by-
product of RNA polymerase II (Pol II) transcription
or biologically meaningful. Here, we use a functional
evolutionary approach that involves nascent tran-
script mapping in S. cerevisiae strains containing
foreign yeast DNA. Promoter regions in foreign envi-
ronments lose the directionality they have in their
native species. Strikingly, fortuitous promoter re-
gions arising in foreign DNA produce equal transcrip-
tion in both directions, indicating that divergent tran-
scription is a mechanistic feature that does not imply
a function for these transcripts. Fortuitous promoter
regions arising during evolution promote bidirec-
tional transcription and over time are purged through
mutation or retained to enable new functionality.
Similarly, human transcription is more bidirectional
at newly evolved enhancers and promoter regions.
Thus, promoter regions are intrinsically bidirectional
and are shaped by evolution to bias transcription
toward coding versus non-coding RNAs.

INTRODUCTION

Eukaryotic promoter regions are nucleosome-depleted regions

that contain binding sites for transcriptional activator proteins

and core promoters bound by general transcription factors and

RNA polymerase II (Pol II) assembled into a preinitiation complex

(Burke et al., 1998; Smale, 1997, 2001; Struhl, 1987; Weis and

Reinberg, 1992). Activator-binding sites in promoters and en-

hancers can function bidirectionally, but the preinitiation com-

plex is intrinsically asymmetric and hence promotes transcrip-

tion in only one direction. Nevertheless, most eukaryotic

promoter regions generate divergent transcripts, many of which

are antisense non-coding RNAs that are rapidly degraded by the

nuclear exosome (Almada et al., 2013; Core and Lis, 2008; Flynn

et al., 2011; Kilchert et al., 2016; Neil et al., 2009; Ntini et al.,

2013; Rege et al., 2015; Seila et al., 2008; Vera and Dowell,

2016). Although a given coding transcript and the divergent up-
stream non-coding transcript share the same promoter region,

each transcript originates from a different preinitiation complex

(Rhee and Pugh, 2012) and thus are initiated by different core

promoters. In addition, divergent non-coding transcripts are

often observed in enhancers that can be located far upstream

or downstream of the promoter region.

Several possible functions, such as maintenance of nucleo-

some-depleted regions (NDRs) and de novo gene formation

(Scruggs et al., 2015; Wu and Sharp, 2013), have been proposed

for divergent transcription but none has been demonstrated

experimentally. On the other hand, divergent transcription may

be the by-product of anopen chromatin region and thus represent

transcriptional noise (deBoer et al., 2014; Seila et al., 2009; Struhl,

2007). At the heart of this debate lies the question of intrinsic

directionality. Are promoter regions intrinsically unidirectional

and then shaped by evolution to support divergent transcription,

or are they intrinsically bidirectional? Consistent with the unidirec-

tional model, divergent transcription is not observed equally

across eukaryotes (Core et al., 2012) and sense and antisense

divergent transcription rates do not correlate (Churchman and

Weissman, 2011). Further, directionality is controlled by a number

of regulators (Churchman and Weissman, 2011; Marquardt et al.,

2014; Tan-Wong et al., 2012; Whitehouse et al., 2007). On the

other hand, pervasive divergent transcription across fungal and

mammalian genomes (>80% of promoter regions) supports the

idea that promoter regions are intrinsically bidirectional.

Functional analyses of native, and hence highly evolved, or-

ganisms in vivo cannot distinguish whether bidirectional pro-

moter regions and non-coding transcripts are a mechanistic

consequence of transcription or an evolved biological function.

In principle, this distinction can be addressed by analyzing tran-

scription of evolutionarily irrelevant DNA.

In this study, we use a functional evolutionary approach to

investigate the intrinsic directionality of yeast promoter regions

and how promoter region directionality evolves (Hughes

et al., 2012). Specifically, we compare Pol II occupancy across

native S. cerevisiae, K. lactis, and D. hansenii genomes with

S. cerevisiae strains containing large regions of these foreign

yeast species genome. Of particular note, we previously

described nucleosome-depleted regions that fortuitously occur

in D. hansenii coding regions when they are present in

S. cerevisiae (Hughes et al., 2012). These regions, which presum-

ably arise by fortuitous binding of S. cerevisiae activators that re-

cruit nucleosome remodelers, often function as promoters,
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Figure 1. Promoter Region Directionality

across the Saccharomyces cerevisiae

Genome

(A) NET-seq analysis of the Saccharomyces cer-

evisiae genome. The upper panel shows the dis-

tribution of active Pol II for the promoter region of

the YBL068Wgene. Transcription in the sense and

antisense directions are plotted above and below

the horizontal axis, respectively. The bottom panel

shows the aggregate plot of NET-seq reads

averaged over all gene promoter regions by

aligning to their TSS. Only promoter regions be-

tween tandemly oriented genes were included to

ensure that the antisense transcript is non-coding.

(B) Directionality score is defined as the log10 ratio

of sense and antisense reads measured within

500-bp windows situated upstream and down-

stream of TSS (shown as boxes in Figure 1A).

Genome-wide distribution of the directionality

score is displayed in the middle panel. For pro-

moter regions lacking sense (left panel) or anti-

sense reads (right panel), distributions of the

antisense or sense reads are displayed instead.

Promoter regions were categorized as directional

(yellow) if the sense to antisense ratio wasR 3 and

bidirectional (pink) if the ratio was <3.

See also Figure S1.
although transcriptionwasminimally characterized.AsD.hansenii

coding regions are evolutionarily irrelevant for transcriptional initi-

ation in S. cerevisiae, they represent an ideal case in which to

mechanistically examine the issue of bidirectional transcription

in the absence of evolutionary constraints. We then combine

this information with evolutionary analysis of yeast species to

address how promoter directionality has evolved.

RESULTS

Transcription Is Biased toward the Coding Direction
While coding mRNAs are relatively long-lived, the corresponding

antisense transcripts are rapidly degraded non-coding RNAs.

Consequently, to quantitate promoter directionality, nascent

transcription in each direction must be monitored. Using

native elongating transcript sequencing (NET-seq) to precisely

and quantitatively map engaged Pol II complexes across the

S. cerevisiae genome (Churchman and Weissman, 2011), we

define a directionality score based on the ratio of sense and anti-

sense reads (Figures 1A and 1B). Because of the compact yeast

genome, we focused our analysis on promoter regions between

tandemly oriented genes in order to avoid analyzing coding tran-

scription in the antisense direction. Consistent with previous re-

ports (Churchman and Weissman, 2011), S. cerevisiae promoter

regions exhibit higher sense transcription than divergent anti-

sense transcription on average (Figures 1B, S1A, and S1B) The

majority (>70%) of promoter regions are ‘‘directional,’’ defined

by at least three times more sense transcription than antisense

transcription, including highly directional cases in which no anti-

sense is detected. On the other hand, approximately a quarter of

promoter regions are ‘‘bidirectional’’ that we define as sense:

antisense ratios between 1/3 and 3 (Figure 1B). Importantly,

NET-seq measures of directionality positively correlate with
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directionality measures using TFIIB ChIP-exo data (Rhee and

Pugh, 2012) that correspond to initiation rates and 4tU-seq

(Schulz et al., 2013) data that correspond to synthesis rates, indi-

cating that bias in directionality largely arises from biases in

initiation, not in elongation (Figure S1C). Thus yeast promoter re-

gions are largely directional but exhibit substantial variability.

Directionality Loss in Foreign Environment
To address whether promoter regions are intrinsically unidirec-

tional or bidirectional, we analyzed promoter directionality in

K. lactis, inD. hansenii, and in five S. cerevisiae strains each con-

taining a yeast artificial chromosome (YAC) harboring a�150-kb

piece of K. lactis or D. hansenii DNA (Figures 2A and S1D; see

STAR Methods) (Hughes et al., 2012). Because of the lack of

transcription start site annotation for these yeast species, we

developed FIDDLE (flexible integration of data with deep

learning), an integrative deep learning tool that leverages multi-

ple types of available genomics data to predict genome-wide

transcription start sites (Eser and Churchman, 2016). FIDDLE is

capable of predicting transcription start site (TSS) with nearly

the same accuracy as 50 end mapping techniques, such as

TSS-seq (Malabat et al., 2015) (Figures S2A and S2B).

Like in S. cerevisiae, promoter regions in both K. lactis and

D. hansenii are predominantly directional (Figures 2B and 2C).

Interestingly, a global-scale comparison of native K. lactis and

D. hansenii with the S. cerevisiae strains containing the corre-

sponding foreign yeast DNA reveals a reproducible loss in pro-

moter directionality when DNA is in a foreign environment (p

values < 10�4 and 2.3 3 10�3 for K. lactis and D. hansenii,

respectively, using a Kolmogorov-Smirnov [KS] test) (Figures

2B, 2C, and S2C–S2E). We do not observe an enrichment of

any S. cerevisiae transcription factor motifs at promoter regions

that change in directionality (Figure S2F). Thus, the decrease in
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Figure 2. Promoter Region Directionality Is Lost in a Foreign Environment

(A) Chromosome pieces extracted from K. lactis and D. hansenii were inserted into yeast artificial chromosomes (YACs) containing centromere and telomere

sequences and selective markers on both arms.

(B) NET-seq reads for two promoter regions from K. lactis (left) and D. hansenii (right) are shown in their native environments and in the foreign (S. cerevisiae)

environment.

(C) Genome-wide distributions of the directionality score native species and YAC S. cerevisiae strains are displayed in the middle panel. For promoter regions

lacking sense (left panel) or antisense reads (right panel), distributions of the antisense or sense reads are displayed instead. The p values of two sample

Kolmogorov-Smirnov (KS) test for YAC and native distributions are 3.8 3 10�7 (K. lactis) and 2.0 3 10�9 (D. hansenii).

See also Figures S1 and S2.
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directional bias suggests that some DNA sequences on the

heterologous promoter regions are no longer recognized by

S. cerevisiae proteins, and consequently are unable to promote

directionality in the foreign environment. Therefore, the overall

decrease in directionality and the absence of highly directional

transcription from the heterologous promoter regions suggests

that the ground-state of transcription is bidirectional.

Fortuitous Promoter Regions Generate Equal
Bidirectional Transcription
In the experiments described above, promoter directionality is

not entirely lost in a foreign environment, due either to residual

detection of foreign DNA sequences by S. cerevisiae proteins

or an intrinsically directional property of promoter regions. To

discriminate between these possibilities, we examined de novo

promoter regions that do not exist in the native organism and

hence are evolutionarily irrelevant inS. cerevisiae. Using FIDDLE,

we identified in an unbiased manner 43 D. hansenii coding

sequences that act as fortuitous promoter regions when placed

in the foreign environment of the S. cerevisiae nucleus (Figures

3A, 3B, and S3A). Importantly, we observed that fortuitous pro-

moter regions are predominantly bidirectional, certainly more

bidirectional than directionality in native D. hansenii (p value <

10�12 using a KS test) or D. hansenii YACs (p value < 10�5 using

a KS test) (Figures 3C and S3B). These fortuitous promoter re-

gions are depleted for nucleosomes with phased nucleosomes

on both sides and are enriched for the general transcription fac-

tor, TFIIB (Figure 3B) (Hughes et al., 2012). The majority of de

novo nucleosome-depleted regions (71%) co-occur with a fortu-

itous promoter region. Core promoter elements, TATA-like mo-

tifs, are not enriched in fortuitous promoter regions (Table S1).

While certain core promoter elements produce strong levels of

transcription, a wide variety of DNA sequences are capable of

inducing initiation (Lubliner et al., 2013, 2015; Smale and Kado-

naga, 2003). Thus, we propose that the de novo removal of nu-

cleosomes by activators would expose DNA to the transcription

machinery, resulting inmodest levels of transcription initiation on

both strands. In sum, these observations demonstrate that pro-

moter regions are intrinsically bidirectional and hence that direc-

tional promoters are molded by evolution.

Newly Evolved Promoter Regions Are Less Directional
Than Are More Evolved Promoter Regions
The idea that evolutionary pressure drives promoter regions

away from their intrinsic bidirectionality predicts that direction-

ality should increase in accord with evolutionary time. Using

sequence alignment from seven Saccharomyces species (Siepel

et al., 2005), we calculated genomic evolutionary rate profiling

(GERP) scores that reflect the deficit in nucleotide substitution

arising from selective pressure on a particular element that con-

strains the DNA sequence (Cooper et al., 2005a). This analysis

reveals that in S. cerevisiae directional promoter regions contain

more constrained elements than do bidirectional promoter re-

gions, indicating that they have experienced higher levels of

evolutionary selection (p value of 0.02 using aKS test) (Figure 4A).

In addition, we coarsely categorized genes by evolutionary time

by comparing S. cerevisiae genes whose orthologs are found

only in the Saccharomyces sensu stricto genus to all other genes
892 Cell 170, 889–898, August 24, 2017
(Carvunis et al., 2012). Promoter regions of sensu stricto only

genes are less directional than are those genes also found in

other yeast species (p value < 10�12 using a KS test) (Figures

4B and 4C). Together, these analyses suggest that the promoter

regions evolve to support directional transcription.

To investigate which sequences may have been selected for

and may confer directionality, we searched for elements that

show differential enrichment between directional and bidirec-

tional promoter regions. Elements that make strong core pro-

moters, such as the TATA box, showed similar enrichments

across both classes of promoter regions with little to no effect

(Figure S4). Instead, we postulated that the selection for tran-

scription factor binding motifs might be responsible for altering

promoter region directionality. We determined the preferential

enrichment of annotated yeast TF motifs across directional

and bidirectional promoter regions. We found that 12 transcrip-

tion factor motifs were statistically more enriched at directional

promoter regions and zero motifs were more enriched at bidirec-

tional promoter regions (Table S2). These analyses suggest that

directionality is orchestrated by a set of asymmetrical activators

(or repressors) that increase sense transcription and/or repress

antisense transcription.

Evolutionary Resolution of Fortuitous Promoter Regions
Although the fortuitous promoter regions described here arise in

the context of an artificial experiment, they are analogous to

new promoter regions that inevitably arise during evolution via

fortuitous changes in DNA sequences and/or transcription fac-

tors. After the generation of such a novel promoter region, the or-

ganism can take either of two possible evolutionary paths (Fig-

ure 5A): purge or retain the novel promoter region. To look for

such events, we identified S. cerevisiae transcription factor bind-

ing motifs that are more frequently observed at fortuitous versus

native D. hansenii promoter regions (Figures 3D and S5; Table

S3). At the top of the list are Reb1 andAbf1, constitutive regulatory

factors that bind to many genes in S. cerevisiae and function

through the recruitment of chromatin remodelers that displace nu-

cleosomes (Ganapathi et al., 2011; Hartley and Madhani, 2009;

Raisner et al., 2005); these proteins are present in K. lactis, but

in D. hansenii are not present (Abf1) or serve a different function

(Reb1) (Tsankov et al., 2010; Wapinski et al., 2007). Consistently,

fortuitous promoter regions are present in D. hansenii YACs, but

not present in the K. lactis YACs, suggesting that fortuitous pro-

moter regions arise when DNA is placed into a foreign environ-

ment in which the set of transcription factors differ from the

endogenous environment. In addition, the frequencies of Reb1

and Abf1 binding sites across coding sequences in 23 yeast spe-

cies vary as a function of phylogenetic branching point relative to

S. cerevisiae. Binding site frequencies are systematically lower in

coding regions after the whole-genome duplication (WGD) event,

when these binding sites became functional (Figure 5B), suggest-

ing that these sites were purged from coding regions to

discourage the formation of fortuitous promoter regions.

Conversely, a fortuitous promoter region and the new tran-

scripts arising within a coding regionmight be utilized and evolu-

tionarily selected, particularly after theWGDwhen the other copy

of the original gene would remain. In this scenario, transcription

factor binding sites found at fortuitous promoter regions should
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Figure 3. Fortuitous Promoter Regions Arise in Foreign Environments and Produce Bidirectional Transcription

(A) Example of a fortuitous promoter region emerging within the coding sequence of the D. hansenii gene, DEHA2D15356g when in a foreign (S. cerevisiae)

environment.

(B) Aggregate plot of the average NET-seq reads over the fortuitous promoter regions in native and YAC strains (upper two panels). Transcription in the sense and

antisense directions are plotted above and below the horizontal axis, respectively. Aggregate plots are shown for TFIIB chromatin immunoprecipitation

sequencing (ChIP-seq) in YAC strains (dark red) andMNase-seq in YAC (blue gray) and native (dark blue) strains over the fortuitous promoters are shown (bottom

two panels).

(C) Histogram of directionality scores for native D. hansenii (blue, upper), corresponding YACs (green, upper), and the fortuitous promoter regions (bottom).

Genome-wide distributions of the directionality score are displayed in the middle panels. For promoter regions lacking sense (left panels) or antisense reads (right

panels), distributions of the antisense or sense reads are displayed instead. Two sample KS test p values are 7.1 3 10�12 and 2.1 3 10�4 for when comparing

fortuitous distribution to D. hansenii native and YAC distributions, respectively.

(D) Transcription factors whose binding sites are significantly enriched at fortuitous promoter regions. p values are determined through comparison of binding site

density at fortuitous promoter regions compared to D. hansenii native promoter regions. Table S3 summarizes the data.

See also Figures S3 and S5 and Tables S1 and S3.
also be found at the promoters of newly evolved genes. We iden-

tified a set of transcription factor binding sites that are specif-

ically enriched at S. cerevisiae promoter regions as compared

to coding regions and found that only a subset of these are

located at promoters of sensu stricto only genes. In addition,
there is high overlap between the transcription factor binding

sites enriched in the promoters of newly evolved (sensu stricto

only) genes and fortuitous promoter regions that are highly

distinct from those enriched at older genes (Figure 5C), suggest-

ing that some newly evolved genes may have started as a
Cell 170, 889–898, August 24, 2017 893
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Figure 4. Evolutionary Analysis of Promoter Region Directionality

(A) Aggregate plots of genomic evolutionary rate profiling (GERP) scores, deter-

mined by multiple alignments of seven Saccharomyces genomes, for directional

and bidirectional promoter regions as defined in Figure 1B. The p value is 0.02

calculated by Kolmogorov-Smirnov test for the distributions of average GERP

scoresover directional andbidirectional promoters, i.e., 500bpupstreamofTSS.

(B) Evolutionary tree displaying the relationship between 23 yeast species.

Saccharomyces sensu stricto species are boxed.

(C) Directionality distributions for the promoter regions of the genes whose

orthologs are present only in Saccharomyces sensu stricto (orange) and those
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fortuitous promoter region. Lastly, when fortuitous promoter re-

gions that arise in coding sequences are retained through evolu-

tion, they might split the coding region in half to generate two

separate genes. We found 148 possible ‘‘gene splitting’’ events

across the S. cerevisiae genome by asking whether two tandem

genes show strong homology to a single gene in one of the

other 22 sequenced yeast genomes (Table S4). Four tandem

S. cerevisiae gene pairs show high homology to a single

D. hansenii coding region, and all of these are separated by either

a Reb1 or Abf1 binding site, which is not expected by chance

(p value = 0.047). This suggests that these gene splitting events

may have been formed by the arrival of new transcription factors.

Thus, the bidirectional fortuitous promoter regions emerging in

YAC coding regions represent a naive state that likely reflects

how promoters arise during natural evolution.

Human Transcription Is Bidirectional at Newly Evolved
Regulatory Regions
As widespread divergent transcription also occurs in human

cells (Core et al., 2008; Preker et al., 2008; Seila et al.,

2008), we asked whether the promoter region ground state is

conserved to humans. Analysis of NET-seq data from HeLa

S3 cells reveals that transcription from human promoter regions

is also strongly biased toward the coding direction (Figures 6A

and 6B) (Mayer et al., 2015). A comparative epigenomic data of

the livers of 20 mammalian species identified a small set of

newly evolved liver promoter regions as regions that are

functionally active (defined by histone modifications) in human

liver and none of the other 19 mammalian livers (Villar et al.,

2015). Consistent with our analysis in yeast, we find that newly

evolved liver human promoter regions are more bidirectional

than highly conserved promoter regions (Figure 6C). The

modest effect size is due in part to the tissue-specific nature

of the Villar et al. (2015) classification, because some of the

promoter regions classified as newly evolved might actually

be more highly conserved promoter regions, and simply active

in other tissues.

In contrast to human promoter regions, most human en-

hancers are newly evolved, arising from the exaptation of ances-

tral DNA (Villar et al., 2015). Thus enhancers could arise in

a similar manner as the fortuitous promoter regions in yeast,

because in large genomes with low gene density, fortuitous

changes in sequences will occur more frequently within inter-

genic regions, and some of these changes will create new regu-

latory regions. We postulated that the transcription produced by

enhancer regions (eRNAs) would be bidirectional, similar to that

of fortuitous promoter regions in yeast. Consistent with what has

been described (Andersson et al., 2014), we find that transcrip-

tion directionality of human enhancers is bidirectional and indis-

tinguishable to the transcription directionality of fortuitous yeast

promoter regions (p value of 0.59 using a KS test) (Figure 6B).

Thus across yeast and human genomes, newly evolved nucleo-

some depleted regions produce bidirectional transcription,
whose orthologs are also present in other species (blue). The distributions are

significantly different according to the KS test (p value < 3.5 3 10�12).

See also Figure S4 and Table S2.
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Figure 5. Evolutionary Trajectories of De

Novo Promoter Regions

(A) Schematic showing possible paths that a cell

can take after an emergence of a fortuitous pro-

moter region. The first option is purging the tran-

scription factor binding site found in the coding

sequence by mutation (left). Alternatively, the new

transcripts produced by the fortuitous promoter

regions could be retained (right).

(B) Coding sequence binding site densities are

calculated for Reb1 and Abf1 for the genomes of

23 yeast species, averaged across each clade and

plotted against the branching point in the evolu-

tionary tree relative to S. cerevisiae (see Fig-

ure 4B). Difference between the binding site den-

sities for the genomes of the species at each

branch point and densities for the S. cerevisiae

genome was determined by a two-sample Pois-

son intensity test (Gu et al., 2008). **p value < 10�4,

***p value � 10�10.

(C) Venn diagram shows the overlap between the

transcription factors whose binding sites are en-

riched at fortuitous promoter regions and endog-

enous promoter regions of sensu stricto specific

and other genes in S. cerevisiae.

See also Table S4.
indicating that the promoter region ground state is a conserved

feature of transcription mechanics.

DISCUSSION

Analysis of transcriptional events that occur in evolutionarily

irrelevant DNA make it possible to determine the ground state

that reflects basic mechanistic properties of Pol II transcription

in vivo. The observation that fortuitous promoter regions

(D. hansenii coding sequences in S. cerevisiae cells) give rise to

equal transcription in both directions indicates that bidirectionality

is the transcriptional ground state. The ground state is mediated

primarily by activator proteins, which generate nucleosome-

depleted regions via recruitment of nucleosome remodeling com-

plexes and stimulate transcription in both directions. As a conse-

quence, functional core promoters that support transcription to

similar extents invariably occur on both sides of the activator-

binding sites within the nucleosome-depleted region. This latter

conclusion, though perhaps unexpected, is consistent with the

observation that the sequence of the core promoter has little ef-

fect when transcriptional activation occurs at low to moderate

levels (Iyer and Struhl, 1995). Our results also suggest that, in

native organisms, many and perhaps nearly all of the non-coding

antisense transcripts from bidirectional promoter regions arise as

a mechanistic consequence of Pol II transcription and are evolu-

tionarily irrelevant. Some individual antisense transcripts may

have a biological function, but the mere existence of such tran-

scripts is expected and does not imply any functional role. Simi-

larly, the bidirectionality of eRNAs is likely a consequence of the

transcriptional ground-state, which may question the direct bio-

logical significance of enhancer RNAs in mammalian cells.
It has been suggested that divergent transcription promotes

new gene formation, and there are promoter regions that seem

to have been derived from enhancers (Engreitz et al., 2016; Wu

and Sharp, 2013). Thus, rather than serving immediate functional

roles, a subset of eRNAs and antisense RNAs could be acting as

an RNA reservoir that can be shaped by evolutionary pressures

to serve physiological functions in descendants (Churchman,

2017; Wu and Sharp, 2013).

The fact that promoter regions are intrinsically bidirectional

means that directional transcription in native organisms is an

evolved trait. As transcriptional activator proteins are generally

bidirectional and nucleosome-depleted regions are non-direc-

tional, this evolutionary process could occur via DNA sequences

(and interacting proteins) on one side of the activator binding sites

that increase and/or decrease transcriptional activity in one

direction. For example, two core promoter regions that mediate

divergent transcription might evolve to differentially respond to

the activator protein(s), and such a mechanism occurs in

S. cerevisiae, becausestrongactivatorproteinsoften require aca-

nonical TATA element for high levels of transcription (Iyer and

Struhl, 1995; Struhl, 1986). Alternatively, the binding of asym-

metric activators (e.g.,monomers) or repressorswithinapromoter

region could also confer higher transcription directionality. Our

analysis suggests that this is the dominant mechanism by which

directionality is conferred in yeast as we identified a subset of

DNA-binding protein motifs that are preferentially enriched at

directional promoter regions (Table S2). Other mechanisms of

directional transcription could involve binding sites for repressors

that block the connection between the activator and the basic Pol

II machinery (Brent and Ptashne, 1984), sequences that affect

nucleosome stability, or sequences that affect transcriptional
Cell 170, 889–898, August 24, 2017 895
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Figure 6. Human Transcription Is More Bidirectional at Newly

Evolved Regulatory Regions

(A) Directionality score histogram of human coding sequence

promoter regions is shown. The directionality scores of the human pro-

moter regions are calculated the same way as for yeast promoter regions,

using NET-seq data from HeLa S3 cells (Mayer et al., 2015), with one

alteration. The length of the upstream and downstream windows around

the TSS is 1 kb instead of 500 bp, due to the ambiguity of human TSS

annotation. Non-overlapping human CDS were curated as described in

Mayer et al. (2015).

(B) Absolute values of directionality scores for enhancers (HeLa S3), human

coding promoter regions (HeLa S3), and yeast coding promoter regions are

plotted as cumulative distribution. Enhancer regions were identified as

described in Mayer et al. (2015). Fortuitous promoter regions and en-

hancers are not statistically significantly different (p value = 0.59 using a

KS test).
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elongation, reinitiation, or termination. Whatever mechanisms are

involved, our results strongly suggest that directional transcription

innativeorganisms involvesco-evolutionandselectionofDNAse-

quences and transcription factors for some biological function(s).
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