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Materials and Methods 
 

Cell culture.  The inducible model of cellular transformation involves MCF-10A, a non-transformed 

mammary epithelial cell line (1) containing ER-Src, a derivative of the Src kinase oncoprotein (v-Src) 

that is fused to the ligand-binding domain of the estrogen receptor (2). Cells were cultured in DMEM/F12 

medium with the supplements as previously described (3, 4). Tamoxifen (Sigma, H7904, 0.4 mM) was 

used to transform this inducible cell line, when the cells were grown to 30% confluence. For the drug 

inhibition experiments, cells were pretreated with SP600125 (JNK inhibitor, Selleck Chemical, S1460, 

0.3 µM), S-Ruxolitinib (JAK inhibitor, Cayman Chemical, #11609, 0.1 µM), Tofacitinib (JAK inhibitor, 

Selleck Chemical, S2789, 0.1 µM) and IL-1RA (IL-1R antagonist, Peprotech, #200-01RA, 30 ng/ml) for 

75 minutes after which cells were transformed by addition of 0.4 mM Tamoxifen and 4 ng AZD0530 for 

24 hours. Transformation efficiency was measured by cell growth under low attachment conditions as 

described previously (5).   

 

CRISPR Knockouts.  CRISPR-blasticidin lentiviral plasmid was constructed by replacing puromycin 

resistance gene with blasticidin resistance gene in LentiCRISPR V2 plasmid (Addgene, #52961). The 

oligonucleotide sequences used to clone into CRISPR-blasticidin plasmid were as follows: STAT3 

(CACCGCGATCTAGGCAGATGTTGGG and AAACCCCAACATCTGCCTAGATCGC); JUN 

(CACCGGCACCTCCGCGCCAAGAACT and AAACAGTTCTTGGCGCGGAGGTGCC); JUNB 

(CACCGGCGCTTTGAGACTCCGGTAG and AAACCTACCGGAAGTCTCAAAGCGCC); NF-kB 

(CACCGGAATGACAGAGGCGTGTATA and AAACTATACACGCCTCTGTCATTCC); FOS 

(CACCGGGCGTTGTGAAGACCATGAC and AAACGTCATGGTCTTCACAACGCCC). CRISPR-

blasticidin plasmid and three lentiviral plasmids, VSV-G, GP and REV were co-transfected into 293T cells 

to produce lentiviruses as the previous publication (6). After CRISPR lentiviruses infection, ER-Src cells 

were selected with blasticidin 10 μg/ml for 3 days to generate CRISPR knockout stable cell lines.  The 

knockout efficiencies of the transcription factors were assessed by Western blotting. 
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Nucleocytoplasmic separation, co-immunoprecipitation, and Western blotting.  Cells were suspended 

in a buffer (10 mM HEPES PH 7.5, 10 mM KCl, 2 mM MgCl, PMSF 0.1 mM and Roche complete protease 

inhibitor, Sigma, #11697498001) and incubated on ice for 20 min. After grinding the cells 50 times with a 

Wheaton Dounce A, the cell lysate was layered on top of 40% sucrose buffer and centrifuged at top speed at 

40C for 5 minutes.  The supernatant (cytoplasm) and pellet (nucleus) were separated, and the The nuclear 

pellet was re-suspended in 20 mM Tris pH 7.4, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% Triton X-

100, 25 mM sodium pyrophosphate, 1 mM NaF, 1 mM β-glycerophosphate, 0.1 mM sodium orthovanadate, 

1 mM PMSF, 2 μg ml−1 leupeptin and 10 μg ml−1 aprotinin.  Co-immunoprecipitations were performed by 

mixing nuclear and cytoplasmic fractions with antibodies and Dynabeads protein G (Life Technology, 

10004D) in buffer (50 mM Tris (PH 7.5), 100 mM NaCl, 1.5 mM EGTA and 0.1% Triton X-100) at 40C 

overnight. Dynabeads were washed with Co-IP buffer for 8 times, and immunoprecipitated proteins were 

analyzed by Western blotting. Antibodies for co-immunoprecipitations were against FOS (Cell Signaling, 

#2250), NF-kB1 (SCBT, SC-372X), and STAT3 (Cell Signaling, #9139), and antibodies for western blotting 

were against STAT3 (Cell Signaling, #12640), RELA (Cell Signaling, #8242), and JUNB (Cell Signaling, 

#3753 and SCBT, SC-8051). 

  

Micronucleus assays.  Cells were seeded into 8-well chamber slides (LAB-TEK, #154941), transformed for 

indicated  times, fixed with 4% Formaldehyde, and then stained with DAPI (2 µg/ml) for 5 minutes. The 

pictures were captured using Michael Widefield inverted Nikon Ti2 fluorescence microscope at Nikon 

Imaging Center, Harvard Medical School. Micronuclei were counted from 5 random fields of each time 

point.  

 

ChIP-seq and DNase-seq to define chromatin states.  ChIP-seq (7) and DNsae-seq (8) were performed 

as described previously.  Fastq reads were aligned to human reference genome (hg19) using Bowtie (9) 

allowing up to 2 mismatches. Only the uniquely mappable reads were used for subsequent analyses. For 

ChIP-seq data for STAT3, NFKB1, JUN, JUNB, FOS, H3K27ac, H3K4me3 and H3K4me1, we used 

MACS (10) to call peaks with the cutoff P-value < 10-8 in at least one sample, using the parameters 

“macs2 callpeak --llocal 1000000 -g 2.7e9”. For ChIP-seq data for H3K27me3, H3K9me3 and 
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H3K36me3, we used SICER (11) to call peaks with the cutoff E-value > 40, window size 200 bp and 

gap size 600 bp, which is better for identifying broad read peaks. For DNase-seq data, we used MACS 

(10) to call peaks with the cutoff P-value < 10-11 in at least one sample and using the following parameters 

“macs2 callpeak --llocal 1000000 -g 2.7e9”.  Chromatin states were defined as promoters (H3K4me3 

peaks), active enhancers (H3K27ac peaks, but no H3K4me3), poised enhancers (H3K4me1 peaks, but 

no H3K27ac or H3K4me3 peaks) or heterochromatin (H3K9me3 or H3K27me3 peaks). 

 

Analyses of transcription factor binding.  Transcription factors tend to localize into cis-regulatory regions 

(CRRs) that regulate gene expression. We merged overlapping peaks of all factors to define CRR regions.  

For each CRR, we measured factor binding levels as Reads per Million (RPM) using ChIP-seq data, and 

chromatin accessibility based on DNase-seq data. The peak summit of each factor binding site was defined 

based on MACS (10). In Figure 1B, we plotted the distance between peak summits of paired transcription 

factors, located in the same CRR. For each factor binding site, we took 50 nt around the peak summits to 

perform the motif analyses, using the HOMER (12). We used the position weight matrices (PWM) of STAT, 

NF-kb and AP-1 in HOMER (12). In Figure 1D, we plotted the distribution of STAT, NF-kb and AP1 motifs 

around peak summits of transcription factors. As the control, we shuffled the nucleotide positions of PWM, 

and kept the A/T/G/C occurrence frequency of the motifs as the same. We created the shuffled motifs for 50 

times for each motif and plotted their occurrence around the factor peak summits. To examine the 

contribution of factor binding to gene expression, we assigned factor binding peaks to the closest expressed 

genes within a distance of 200 megabases, summed up the ChIP signal, and calculated the binding level fold-

change during transformation.  

 

Transcriptional profiling.  RNA was extracted using mRNeasy Mini Kit following the manufacturer’s 

instruction.  RNA-seq libraries were prepared using TruSeq Ribo Profile Mammalian Kit (Illumina, 

RPHMR12126) as per manufacturer’s instruction. RNA-seq libraries were sequenced by Harvard Bauer 

Core Facility using Hiseq 2000.  Raw reads were aligned to GENCODE (13) defined transcripts and then 

human reference genome (hg19) using Tophat (9) allowing up to 2 mismatches. The gene expression 

levels were indicated as transcript per million (TPM) values.  For Figure 4D and 4E, we downloaded 
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microarray data to from GSE17941 to examine gene expression dynamics during MCF10-ER-Src and 

fibroblast cell transformation (3). The gene expression values were calculated by the RMA approach 

using Affymetrix Expression Console Software.  

 

Cancer patient data analyses.  The gene expression, genetic and lineage annotations of 1,036 cancer 

cell lines were downloaded from the Cancer Cell Line Encyclopedia (CCLE) (14).  The level 3 data 

showing clinical annotations and RNA expression of cancer patients were downloaded from TCGA 

database. The tumor purity estimations were obtained from (15), which estimated tumor purity using 5 

different measurements: STIMATE, based on gene expression profiles of 141 immune genes and 141 

stromal genes; ABSOLUTE, based on somatic copy-number data; LUMP, based on 44 non-methylated 

immune-specific CpG sites; IHC, based on image analysis of haematoxylin and eosin stain slides 

produced by the Nationwide Children’s Hospital Biospecimen Core Resource; and the averaged values 

based on 4 methods above.  The levels of infiltrating immune cells obtained from (16). Single-Cell RNA 

sequencing data in melanoma patients were obtained from (17). 

 

Calculation of cancer inflammation index. The 27 signature genes in the inflammatory loop include genes 

in IL1/NF-kb pathway (IL1A, IL1B, IL1R1, IL1R2, IL1RAP, IL1RL1, MYD88, IRAK2, NFKB1 and 

NFKB2), IL6/STAT3 pathways (IL6, LIF, OSMR, JAK2 and STAT3), TNF /AP-1 pathway (TNFSF10, 

TNFRSF10D, TNFRSF11B, TNFRSF21, ATF3, FOS, FOSL1, FOSL2, JUN and JUNB) and MAP kinases 

(MAP3K8 and MAP4K4). We calculated Spearman’s rank correlation coefficient values between gene pairs 

using gene expression data from CCLE and TCGA. For Figure 4C, we randomly selected expressed genes 

and calculated Spearman’s correlation as the background distribution. We grouped breast cancer patients 

based on their genetic subtypes as following: Triple Negative (ER-, PR- and HER2-), Luminal A (ER+, PR+ 

and HER2-), Luminal B (ER+, PR+ and HER2+), and HER2+ (ER-, PR- and HER2+). 

We calculated the inflammatory index based on the log2 expression levels of these genes 

indicated as Eij, for the gene i in the sample j. Suppose the total gene number to calculate the index is n 

and the total sample number is m. We first normalized the gene expression levels across all samples to 

their median values calculated as Nij= Eij-median(Ei1, Ei2, … Eim). Then for each sample j, we calculated 
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the median expression level of signature genes as Sj=median(N1j, N2j, … Nnj). To obtain the baseline of 

inflammatory levels across samples, we used the lower 5 percentile of expression levels for each gene 

across samples as the basal expression as Bi, and calculated the median expression level as Mi. The final 

inflammatory index for a sample j is calculated as Ij=Sj+median((M1-B1), (M2-B2), …, (Mn-Bn)). The 

same calculation step is used for calculating the overall expression levels of angiogenesis genes, 

apoptosis genes, metastasis/migration genes, and STAT3/NF-kb/AP1 target genes in Figures 7 and S8.  

 

Calculation of cancer progression index.  We picked 98 genes showing significant positive correlation 

with the cancer inflammation index across different cancer types (Figure 6B), are linked to “cell 

migration”, “angiogenesis” and “apoptosis”, and are not immune/inflammation related based on gene 

ontology definition. These genes include: ACTC1, ACTN4, ADAM10, ADAMTSL4, AHR, ANXA2, 

ARHGAP22, C8ORF4, CARD6, CAV1, CFLAR, CIB1, COL15A1, COL1A1, COL4A2, CSRNP1, 

CYP1B1, CYR61, DAB2, DAP, DFNA5, DLC1, DRAM1, ECE1, EDN1, ELK3, EPAS1, EPHB2, F3, 

FN1, GADD45A, GADD45B, HBEGF, HIPK3, HMOX1, HSPG2, HTATIP2, IER3, IGFBP3, ILK, 

ITGA5, ITGAV, JAG1, JUN, LAMB1, LAMC2, LEPR, LGALS1, MYADM, MYH9, MYO1C, NEK6, 

NFKBIA, NOTCH2, NRP1, NUMB, PEA15, PHLDA1, PHLDA2, PLAU, PLK3, PNPLA6, PPP1R13L, 

PPP1R15A, PRKCA, PTPRB, PTPRH, RALB, RHBDD1, RRAS2, RTN4, SDCBP, SEMA4B, 

SERPINB3, SGK1, SH3GLB1, SH3KBP1, SH3RF1, SHB, SHC1, SLC12A6, SQSTM1, SRPX2, 

STEAP3, STK17A, STK17B, STX4, TGFA, TGFBI, TGFBR2, TMEM214, TSPO, UBE2Z, VEGFA, 

WARS, WASF2, XAF1 and ZFP36L1. We used the same calculation steps described for the cancer 

inflammation index to determine the cancer progression index.  

 

Correlation between inflammation levels and drug response. The drug response data of 267 

compounds in 1,001 cancer cell lines were obtained from the Genomics of Drug Sensitivity in Cancer 

(18).  

 

Gene Ontology analyses.  The Database for Annotation, Visualization and Integrated Discovery 

(DAVID) (19) was used for gene ontology analyses.  
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Data availability.  All sequencing data that support the findings of this study have been deposited in the 

National Cancer for Biotechnology Information Gene Expression Omnibus (GEO) and are accessible 

through the GEO series accession numbers GSE115597, GSE115598 and GSE115599.  All 

computational codes are available from the authors upon request. 
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Figure S2. Genomic distribution of STAT3, NF-kB and AP-1 binding sites. (A) Genomic locations of
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The Pearson correlation coefficiency values are shown.
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Figure S7. Gene ontology of genes showing significant positive correlation 
of expression and inflammatory index (median Spearman correlation 
coefficiencies across cancer types > 0.18). 
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Figure S9. Relationship between tumor purity and inflammation. Randomly picked tumor samples with
different inflammation levels and similar purity were examined for expression levels of genes in the indicated
oncogenic pathways. Genes related to immune/inflammatory responses were excluded from the analyses.



Spearman Correlation between 

inflammation index and drug IC50 values

Drug Correlation P-value Drug Target
TL-2-105 0.400 1.85E-26 not defined

Quizartinib 0.375 5.31E-18 FLT3

NPK76-II-72-1 0.358 9.50E-23 PLK3

SB52334 0.358 2.23E-20 ALK5

Amuvatinib 0.344 6.33E-17 KIT, PDGFRA, FLT3

Vorinostat 0.339 1.24E-15 HDAC inhibitor Class I, IIa, IIb, IV

I-BET-762 0.337 1.09E-20 BRD2, BRD3, BRD4

GSK1070916 0.337 1.69E-18 AURKA, AURKC

Tubastatin A 0.332 4.19E-20 HDAC1, HDAC6, HDAC8

YM201636 0.319 1.13E-15 PYKFYVE

Ruxolitinib 0.243 2.06E-07 JAK1, JAK2
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Figure S10. The correlation between inflammation levels of cancer cells and drug response. (A) The 
Spearman Correlation Coefficiency between inflammation levels and IC50 values of drug compounds 
across 1,001 human cancer cell lines. (B) The drug compounds showing better efficacy in highly 
inflammatory cancer cells. 
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