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ABSTRACT

Tmnscfiptlonal regulation directly influences many biological phenomena such
as cell growth, response to environmental change, development of multicellular
organisms, and disease. Transcriptional regulatory mechanisms are fundamen-
tally similar in eukaryotic organisms (93). Components of the basic RNA po-
lymemse 11 (Pol II) machinery are highly conserved and, in some eases,
functionally interchangeable. Transcription factors with similar structures and
DNA-binding specificities are found throughout the eukaryotic kingdom, and
acidic activation domains stimulate transcription across a wide range of species.
Complex promoters with multiple protein binding sites are typical in all eu-
karyotic organisms, and efficient transcription generally requires the combina-
torial and synergistic action of activator proteins that function at long and variable
distances from the mRNA initiation site.

Molecular mechanisms of eukaryotic transcriptional regulation have been
elucidated from the studies that involve a wide variety of genes, promoters,
proteins, organisms, and experimental approaches. This review focuses on tran-
scriptional regulatory mechanisms in the baker’s yeast Saccharomyces cere-
visiae. Studies in yeast have emphasized powerful genetic approaches that are
not available in other eukaryotic organisms. As a consequence, yeast is p~xticu-
lady amenable for analyzing transcriptional regulatory mechanisms in vivo under
true physiological conditions. Furthermore, classical and molecular yeast genet-
ics has permitted the discovery and functional characterization of transcriptional
regulatory proteins that were not identified in biochemical studies. Thus, genetic
analysis in yeast has often generated information complementary to that obtained
from biochemical studies of transcription in vitro, and it has provided unique
insights into mechanisms of euk~yotic transcriptional regulation.
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PROMOTER ELEMENTS

Yeast Pol II promoters contain upstream (UAS), TATA, and initiator (Inr)
elements whose properties have been reviewed previously (127). Upstream

elements are short (10-30 bp), promoter-specific DNA sequences that are
typically located 50 to 500 bp upstream of the initiation site. Yeast upstream

elements are analogous, and in many cases homologous, to mammalian en-

hancer sequences. However, while yeast upstream elements function bidirec-
tionally at variable distances upstream of the initiation site, they generally do

not activate transcription when located downstream. In general, upstream

elements are recognized by DNA-binding proteins that determine the particular
regulatory properties of a given promoter. However, approximately 20% of
yeast promoters contain homopolymeric dA:dT tracts that function as upstream

elements by virtue of their intrinsic DNA structure, not by interacting with a
specific DNA-binding protein (60).

Most yeast promoters contain TATA elements (consensus TATAAA) that
are important for transcriptional initiation. Yeast TATA elements are located

40-120 bp upstream of the mRNA initiation sites; the precise distance is
functionally unimportant. In contrast, TATA sequences in most other eu-

karyotes are invariably located 25-30 bp away from the initiation site. TATA
elements are recognized by the TATA-binding protein (TBP), a component 

the basic machinery that is required for Pol II transcription. For promoters that
lack recognizable TATA elements, it is presumed that TBP binds in a nonse-

quence-specific manner that is stabilized by protein-protein interactions with
other transcription factors.
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YEAST TRANSCRIPTIONAL REGULATION 653

In yeast, the initiator element is the primary determinant of where transcrip-
tion begins. Initiator elements are located near the mRNA start sites, but unlike
upstream and TATA elements, they do not have a strong sequence consensus.
In comparison to upstream and TATA elements, initiator elements have a
relatively modest effect on the level of transcription.

Some yeast promoters contain negative regulatory elements, termed opera-
tors, that repress transcription. Operators resemble upstream elements in that
they are protein-binding sites that function bidirectionally at variable distances
upstream of TATA elements. Some operators can repress transcription when
located upstream of upstream elements, but repression is generally much more
efficient when the operator lies between the upstream and TATA element.
However, the mating-type silencer efficiently represses transcription when
located 2 kb upstream or downstream from the initiation sites.

GENERAL TRANSCRIPTION FACTORS

Biochemical analysis of yeast and mammalian proteins has led to a reasonably
good description of the remarkably complex Pol II machinery and the mecha-
nism by which it initates transcription (15, 23). In yeast, the essential compo-
nents for accurate initiation in vitro are Pol 11, a 12-subunit enzyme (149), 
well as general transcription factors TBP (53, 128), TFIIB (105), TFIIE (35),
TFIIF (52), and TFIIH (36). TBP binds to the TATA element, TFIIB spans
the region between the TATA element and mRNA initiation site, TFIIF inter-
acts with Pol II and is important in recruiting Pol II to the promoter, TFIIH
phosphorylates the C-terminal tail (CTD) of the largest subunit of Pol II, and
TFIIE is important in promoter clearance. TFIIA, which influences binding of
TBP to the TATA element, is important but not absolutely required for accurate
initiation in vitro (65, 72). In addition, TBP-associated factors (TAFs) that 
part of the TFIID complex (111) and components of the Pol II holoenzyme
(Srb and other proteins)(72, 76) can be considered as general transcription
factors even though they are not required for accurate initiation in vitro.

In vitro, accurate initiation and the response to activators can occur with
recombinant or highly purified general transcription factors (36). Assembly 
an active transcription complex can proceed by stepwise addition of individual
factors. However, the existence of a very large complex containing most of
the general transcription factors suggests the possibility that much of transcrip-
tion apparatus (other than TBP and perhaps TFIIB) is preassembled before
being recruited to the promoter (72, 76).

Although this biochemical description of the general Pol II machinery is
essential for understanding transcriptional regulatory mechanisms, many issues
are best addressed by genetic approaches. In particular, many of the general
factors can interact with transcriptional activation domains in vitro, but the
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654 STRUHL

physiological significance of these interactions remains to be established in
most cases. This section emphasizes yeast genetic experiments that have made
unique contributions to our understanding of the basic Pol II machinery.

TATA-Binding Protein, The Universal Transcription Factor

TATA-Binding Protein (TBP) is the most highly conserved eukaryotic tran-
scription factor, with its C-terminal core domain (180 residues) showing
greater than 80% sequence identity in a wide variety of species (53, 128). The
yeast core domain is necessary and sufficient for normal cell growth, whereas
the evolutionary divergent N-terminal region is functionally dispensible (24,
108). For reasons that are not apparent, overexpression of the core domain,
but not full-length TBP, significantly inhibits cell growth (41,151). The core
domain is an intramolecular dimer of related, but not identical, subdomains
that can be visualized as a saddle consisting of a curved, antiparallel i~-sheet
with four a helices lying on the upper surface (69, 71). The concave underside
of the saddle binds to the TATA element in a manner that causes a dramatic
distortion of the DNA helix in the immediate vicinity of the recognition
sequence.

Although the overall structure of the TBP-TATA element complex is ap-
proximately twofold symmetric, TBP binds in a preferred orientation. Muta-
tions in one TBP subdomain alter TATA-element specificity in a specific
"half-site" of the TATA element (125). Moreover, equivalent mutations in the
two TBP subdomains have distinct DNA-binding specificites (3). As a conse-
quence of the oriented binding of TBP to the TATA element, the convex
surface of the saddle and the 0t helices are also oriented with respect to the
initiation site. Amino acid changes at specific positions on the convex surface
or a helices can specifically affect interactions with TFIIA (16, 123), TFIIB
(70), and Spt3 (32). Thus, the orientation of TBP on the TATA element defines
the locations of interacting components of the basic machinery and hence
imposes unidirectional transcription.

Although initially defined as a basic Pol 11 factor, TBP is required for
transcription by all three nuclear RNA polymerases (53, 128). TBP carries out
its multiple functions by associating with other proteins (TAFs) into distinct
complexes (SL1, TFIID, TFII1B) that are specific for the three RNA polym-
erase machineries. In vivo, TBP appears to be required for transcription of all
genes, including those lacking TATA elements (26). Several TBP functions
have been defined by TBP mutants with Pol-specific effects in vivo. Mutations
affecting the DNA-binding surface indicate that the sequence-specific, TBP-
TATA interaction is important for transcription from conventional Pol II pro-
moters, but not from Pol I and III promoters (118). Conversely, human TBP
supports transcription from TATA-containing Pol II promoters, but not from
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YEAST TRANSCRIPTIONAL REGULATION 655

Pol I, Pol 11I, and TATA-less Pol II promoters; presumably, this reflects
evolutionarily diverged interactions with TAFs that are necessary for recruit-
ment to promoters lacking TATA elements (25). TBP mutants specifically
defective in Pol III transcription define an extensive surface that is likely to
interact with a Pol Ill-specific TAF (27). Analysis of Pol III- and Pol II-specific
mutations suggests that competition among TAFs for limiting quantitites of
TBP determines the relative amounts of Pol II and Pol III transcription in vivo

(27).

TBP-Associated Factors

Yeast TBP can associate with Pol H-specific TAFs into a complex that resem-
bles TFIID from other eukaryotic species (111). As expected, yeast TFIID can
support basal and activated transcription in vitro, whereas TBP is unable to
respond to activator proteins. At least three proteins in yeast TFIID are ho-
mologous to Pol II-specific TAFs in other species (111,144), and other com-
ponents in the yeast TFIID complex will likely have counterparts in other
organisms. All known Pol II-specific TAFs are essential for cell viability.

The biological roles of individual TAFs and the TFIID complex remain to
be determined. It is unclear if the requirement of TAFs for cell viability is due
to a general role in the transcription of most or all yeast genes, a more specific
effect on transcriptional activation or repression, or a very specific effect on
the transcription of one (or a few) essential genes. A related question is whether
transcription from Pol II promoters is mediated by TBP or TFIID. These issues
are of interest because, unlike the case in other organisms, yeast cells appear
to contain a considerable amount of free TBP. Moreover, in experiments
involving the Pol II holoenzyme (see below), it appears that activated tran-
scription can be reconstituted in vitro under conditions where yeast TAFs and
TFIID do not seem to be present (72).

Yeast contains other TBP-associated factors in addition to the Pol II-specific
TAFs that are present in TFIID. Spt3 interacts directly with TBP, and this
interaction is required for normal transcription patterns in vivo (32). Genetic
analysis indicates that Spt3 is functionally related to Spt7 and SptS, and these
proteins may be part of a TBP complex that is distinct from TFIID (33). Motl
is another TBP-interacting factor that inhibits binding to the TATA element
in an ATP-dependent manner (4).

TFIIA

TFIIA associates with and alters the conformation of TBP, and it stabilizes
the TBP-TATA element interaction, presumably by interacting with DNAjust
upstream of the TATA element. However, studies in vitro have generated
considerable controversy about the role of TFIIA in basal and activated tran-
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656 STRUHL

scription. Yeast TFIIA contains two subunits, both essential for cell viability
(110). Depletion of TFIIA activity in vivo reduces transcription of several Pol
II genes, but does not affect Pol HI transcription (65). This suggests that TFHA
plays a general and important role in Pol II transcription, but is not absolutely
required.

An efficient interaction between TFIIA and TBP appears to be essential for
transcriptional activation in vivo. A TBP mutant that is specifically defective
in interacting with TFIIA in vitro is unable to respond to acidic activators in

vivo (123). This TBP derivative is fully competent to support transcription
from many Pol II promoters, suggesting that the TBP-TFIIA interaction plays
a less important (and perhaps no) role in constitutive Pol II transcription.

Selection of mRNA Initiation Site By TFIIB and Pol II.

TFIIB and Pol II are the basal transcription factor~ that are primarily respon-
sible for selecting the initiation site. As mentioned previously, S. cerevisiae
differs from most other eukaryotic organisms in that the distance between the
TATA element and initiation site is longer and more variable. In reconstituted
transcription reactions using basic factors from S. cerevisiae, replacement of
both TFIIB and Pol II by their S. pombe counterparts is necessary and sufficient
to shift initiation to a site characteristic of that in S. pombe (87). In vivo,
mutations affecting either TFIIB or the largest subunit of Pol II (Rpbl) can
reduce initiation from the normal site while increasing initiation from more
downstream sites (10, 106). Conversely, mutations affecting another Pol 
subunit, Rpb9, shift initiation to more upstream sites (39, 58).

TFIIH Connects Pol H Transcription, DNA Repair, and
Cell-Cycle Control

TFIIH is a complex transcription factor that phosphorylates the C-terminal tail
(CTD) of the largest Pol I1 subunit. Remarkably, many TFIIH subunits had
been previously identified by genetic screens, and this discovery revealed
unexpected connections between Pol H transcription, DNA repair, and cell-
cycle control. Initially, TFIIH was isolated as a five-subunit core that contains
the DNA repair proteins Rad3, Tfbl, and Ssll (37). Although the TFIIH core
can function in crude extracts, it does not phosphorylate the CTD or function
in more purified systems. The fully functional transcription factor (termed
TFIIH holoenzyme) contains Ssl2 and a complex of three proteins (termed
TFIIK) that possess CTD kinase activity (36). CTD phosphorylation is medi-
ated by Kin28 (36), which associates with Ccll to form a CDK/cyclin pair
(143) that is homologous to a CDK activating kinase (CAK) involved 
cell-cycle control. Although mammalian CAK was initially identified as a
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YEAST TRANSCRIPTIONAL REGULATION 657

standard CDK/cyclin pair, the CAK subunits are present in TFIIH and they
mediate the associated CTD kinase activity (114).

In addition to its role in Pol 11 transcription, the TFIIH core plays a critical
role in nucleotide excision repair. In this case, however, the TFIIH core does
not interact with TFIIK, but rather with a large complex containing Radl,
Rad2, Rad4, RadiO, and Radl4, proteins required for nueleotide excision
repair (130). Thus, by associating with distinct complexes, the TFIIH core
exists in two forms that are specific for Pol II transcription and DNA repair.
Interchangeability between these two forms may underlie repair-transcription
coupling, the process in which DNA damage on the transcribed strand of active
genes is preferentially repaired.

Pol H Holoenzyme

A considerable portion of yeast Pol II is found in a large multiprotein complex
termed the Pol II holoenzyme (72, 76). Although its precise composition
remains to be clarified, the Pol II holoenzyme contains TFIIF, and perhaps
TFIIB and TFIIH. TBP may weakly associate with the holoenzyme but is
probably not a true component, and TFIIE and TFIIA are not present. In
addition, the Pol II holoenzyme contains Srb proteins (Srb2-Srbll), Gall 
and Sugl, all of which were initially identified by mutations that cause various
transcriptional effects in vivo. Srbl0 and Srbl 1 are of particular interest be-
cause they form a CDK-cyclin pair that phosphorylates the CTD (88). Although
a Pol II holoenzyme and many of the components such as Srb proteins have
yet to be described in other eukaryotic species, it seems almost certain that
they will exist.

In vitro, the Pol II holoenzyme (but not core Pol II) responds to transcrip-
tional activators (72, 76). A subcomplex of the holoenzyme that lacks the Pol
II subunits, termed mediator, is required for activated transcription, and it also
increases the level of basal transcription in reactions using highly purified
components (72). Interestingly, in these most purified systems, transcriptional
activation occurs in the apparent absence of the Pol II-specific TAFs that are
components of TFIID.

The mutations that identified the various components of the Pol II holoen-
zyme have provided some information about their physiological functions.
Some components (Srb4, Srb6, Srb7, and Sugl) are essential for cell growth,
and loss of Srb4 or Srb6 function results in a general loss of Pol II
transcription (136). These results indicate that the Pol II holoenzyme plays
a critical role for transcription in vivo. Other holoenzyme components are
not essential for cell growth, but they play distinct functional roles. The Srb
proteins are functionally related to the CTD because the initial mutations
were isolated as suppressors of transcriptional defects caused by CTD
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truncations (88, 135). Moreover, mutations in the Srbl0/Srbll kinase cause
reduced CTD phosphorylation, and are phenotypically similar to CTD trun-
cations (88). Gall 1 contributes to transcription of many genes including those
activated by Gal4 and Rapl, but it does not seem to be required when the
Gal4 and Rapl binding sites are moved closer to the TATA element (102).
Sugl, which was identified by mutations that relieve the requirement for the
Gal4 activation domain, directly interacts with activation domains and TBP
in vitro (131), suggesting that it may be part of the mediator component 
the Pol II holoenzyme.

TRANSCRIPTIONAL ACTIVATION

Structure and Function of Yeast Activator Proteins

Yeast cells contain a wide variety of DNA-binding transcriptional activator
proteins that specifically recognize upstream promoter elements via typical
eukaryotic DNA-binding motifs (e.g. homeodomain, zinc finger, bZIP, bHLH).
Although most upstream promoter elements are bound by a single transcrip-
tional activator, some target sites (e,g. AP-1, ATF/CREB, Swi5/Ace2) are
recognized by multiple proteins, while others are recognized by heteromeric
complexes such as Hap2-Hap3-Hap5 (94) and Swi4-Swi6 (109). Many yeast
activators are present at low intracellular concentrations, are not essential for
viability, and interact with relatively few promoters. Some activators play
discrete physiological roles, whereas others interact with genes of apparently
unrelated functions. In addition, there is a class of activators (e.g. Rap 1, Abfl,
and Rebl) that are abundant, essential for cell growth, and interact with many
unrelated promoters.

Upon binding to their cognate sites, activator proteins stimulate gene expres-
sion via a transcriptional activation domain that is functionally distinct, and
usually physically separate, from the DNA-binding domain. Yeast activation
domains are often defined by short acidic regions that function autonomously
when fused to heterologous DNA-binding domains. Although negative charge
is clearly important, the level of transcriptional stimulation is also influenced by
hydrophobic residues and other features that are poorly understood at the
structural level (47, 127). Some activation regions become acidic upon phospho-
rylation (121,122), but it is unclear whether increased transcription is due simply
to increased negative charge. Yeast activators are unlikely to contain glutamine-
rich or proline-rich activation domains, because mammalian domains of this type
do not function in yeast cells (81,107). However, not all yeast activators contain
regions that are acidic or are likely to be phosphorylated, suggesting that there
are other types of yeast activation domains.
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YEAST TRANSCRIPTIONAL REGULATION 659

Mechanism of Transcriptional Enhancement by Acidic
Activators

In yeast cells, activators can stimulate transcription by increasing recruitment
of TBP to the promoter. Measurement of the rate at which TBP can produc-
tively access the chromatin template in vivo indicates that accessibility of TBP
to the HIS3 TATA element is a rate-limiting step that can be accelerated by
the Gcn4 activation domain (74). Moreover, direct recruitment of TBP to the
HIS3 promoter by physically connecting TBP to a heterologous DNA-binding
domain activates transcription (18, 73). This latter observation also suggests
that interactions between activation domains and general factors that function
after TBP recruitment (e.g. TFIIB, TFIIF, Pol II) can be bypassed for tran-
scriptional activation. The hypothesis that activators stimulate TBP recruitment
in vivo is attractive in light of observations in vitro that TBP binds very poorly
to TATA elements in the context of chromatin (59).

Independent support for the importance of TBP recruitment to transcrip-
tional activation comes from the analysis of TBP mutants that are specifically
defective in the response to acidic activators in vivo. Several activation-defec-
tive derivatives are altered on the DNA-binding surface of TBP and are unable
to bind TATA elements (2, 85). Although the mechanism is unknown, activa-
tion-deficiency does not simply reflect reduced affinity for the TATA element
but rather involves more specific perturbations of the TBP-TATA interface
(85). Another activation-defective TBP mutant is specifically defective in the
interaction with TFIIA (123). Fusion of a TFIIA subunit to this TBP derivatives
restores activation function, indicating that an efficient TBP-TFIIA interaction
is required for transcriptional activation in vivo, The role of the TBP-TFIIA
interaction in transcriptional activation likely reflects the ability of TFIIA to
stabilize the interaction of TBP to the TATA element.

The mechanism(s) by which acidic activation domains increase recruitment
of TBP to the TATA dement is unknown. One possibility is that acidic
activation domains directly interact with TFIIA and/or TBP, thereby stabilizing
the TBP-TFIIA-TATA complex in the context of chromatin. In a related model,
activation domains might interact with proteins that associate with TFIIA or
TBP (e.g. TAFs or TFI/B). Altematively, acidic activation domains might
directly cause, or indirectly lead to, alterations in chromatin structure that
increase accessibifity of TBP to the promoter. Activation domains can perturb
chromatin structure in the absence of a functional TATA element and tran-
scription (5, 98). Moreover, mutations in histone H4 (31) or in the Swi/Snf
complex that affects nucleosomes (see below) are impaired in transcriptional
activation, suggesting that chromatin slructure plays an active role in the
response to acidic activators. These protein-protein interaction and chromatin
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models are not incompatible and indeed may be synergistic in explaining
increased TBP recruitment by acidic activators.

Although acidic activators can stimulate transcription by increasing recruit-
ment of TBP, other mechanisms will likely be involved. For example, TBP is
bound to the CYC1 TATA elements in vivo in the absence of upstream activator
proteins (19), and artificial recruitment of TBP to the CYCI promoter does not
result in transcriptional activation (18). These observations suggest that, unlike
the situation at the HIS3 promoter, recruitment of TBP to the CYC1 promoter

is not a rate-limiting step for transcription. In support of this idea, transcrip-
tional activation can be observed when a DNA-binding domain is artifically
connected to Gall 1, a component of the Pol II holoenzyme (8). Finally,
alternative mechanisms are suggested by observations that acidic activation
domains appear to be functionally distinct. Acidic activators can differ in their
ability to activate transcription from certain TATA sequences (49), and they
are selectively affected by ada2 and gcn5 mutations (9, 40) and by specific
TBP derivatives (2).

Other Mechanisms of Transcriptional Activation

Although our knowledge about transcriptional activation in yeast is largely
confined to acidic activation domains, there is increasing evidence for other
types of activation domains that function by different molecular mechanisms.
First, many yeast activators do not appear to contain highly acidic regions.
Second, mutations altering TBP that severely impair the response to acidic
activators do not affect the transcription of most Pol II genes and do not abolish
cell growth (2, 85, 123). As normal transcription of most (and perhaps all)
yeast genes requires activator proteins bound to upstream promoter elements,
this observation is strongly suggestive of alternative modes of transcriptional
activation. Third, abundant transcriptional activators such as Rapl, Abfl, and
Rebl also play important roles at DNA replication origins, telomeres, and the
mating-type silencer (63, 92, 129). These proteins might not specifically in-
teract with the Pol II machinery, but instead might carry out their diverse roles
by affecting chromatin.

Some DNA-binding domains play additional roles in transcription beyond
bringing the protein to the promoter. Positive control mutations in the Hapl
(140) and Adrl (139) DNA-binding domains interfere with transcriptional
activation while not affecting DNA binding. Some Hapl derivatives are tran-
scriptionally active only when bound at particular DNA sequences. DNA-bind-
ing domains also may be involved in the transcriptional synergy of multiple
activator proteins bound to the promoter (103). DNA-binding domains might
contribute to transcriptional activation by recruiting protein cofactors and/or
altering chromatin structure. Multifunctional DNA-binding domains are likely
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to be more prevalent than is currently appreciated because functional analysis
of activator proteins by crude deletions or domain swapping is biased against
identifying activation regions that are interdigitated with their DNA-binding
domains.

Intermediary Transcription Factors

Intermediary factors do not bind promoter elements and are not components
of the basic machinery; they have been identified by mutations that have
selective effects on transcription. In principle, an intermediary protein with an
activation domain could act as a co-activator that stimulates transcription upon
association with a DNA-bound protein. Alternatively, an intermediary protein
might be an adaptor/mediator that transduces the signal from the activation
domain to a component of the basic machinery. Finally, intermediary proteins
might increase transcription by altering chromatin structure. By the definition
used here, intermediary proteins do not include those that are tightly associated
with basic transcription factors (e.g. TAFs in the TFIID complex or compo-
nents of the Pol II holoenzyme), or that modify or alter the level of transcription
factors.

A complex containing Ada2, Ada3, and Gcn5 appears to function as a
transcriptional adaptor for a subset of acidic activation domains (57). Mutations
in any of these genes relieve the toxicity associated with the VP16 activation
domain, and they reduce transcriptional activation by some acidic activators.
However, the Ada2-Ada3-Gcn5 complex is not required for transcription of
many genes and is not essential for cell growth. Ada2 interacts with a region
of the VP16 activation domain, and it contains an Ada3-dependent transcrip-
tional activation domain (119). These observations suggest that the Ada2-
Ada3-Gcn5 complex might functionally connect some acidic activation
domains to the basic machinery.

The Swi/Snf complex, which contains at least ten proteins including the
genetically identified Snf and Swi proteins (17, 28), is important for transcrip-
tion of a large set of genes including those stimulated by acidic activators
(148). In vitro, Snf2/Swi2 (84) and the Swi/Snf complex (17, 28) have 
stimulated ATPase activity that is required for transcriptional activity in vivo
(84). More importantly, the Swi/Snf complex alters chromatin structure in 
ATP-dependent manner, and it facilitates the binding of activator proteins to
their target sites in chromatin (28). A related complex from human cells has
similar biochemical properties, and it also increases binding of TBP to nu-
cleosomal templates (59). In vivo, the Swi/Snf complex affects chromatin
structure in a manner that is independent of the transcriptional status of the
promoter (56). These observations indicate that the Swi/Snf complex stimulates
transcription by virtue of its effects on chromatin structure. However, given
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its general ability to increase protein access in the context of chromatin, it is
unclear how the Swi/Snf complex selectively affects the transcription of some
genes, and whether it is directly or indirectly related to the transcriptional
activation process.

TRANSCRIPTIONAL REPRESSION

Repression by Inhibiting the Function of Activators

Given the complexities involved in the basic initiation and transcriptional
activation processes, it follows that transcription can be repressed by a variety
of distinct mechanisms (55), The simplest forms of gene-specific repression
involve specific binding of repressor proteins to operator DNA sites in the
relevant promoters. Operator sites that inhibit transcription can be located at
various positions in promoters. Repressor proteins can compete with activators
by binding to coincident or overlapping sites; e.g. Aerl and ATF/CREB
activators compete for binding to ATF/CREB sites (145). Proteins bound
between upstream and TATA elements also repress transcription, presumably
by sterically inhibiting the communication between upstream activators and
the basic machinery (13). In some cases, yeast repressors can function even
when bound upstream of an intact promoter (62, 126), presumably by a mecha-
nism distinct from simple steric hindrance (see below).

For non-DNA-binding proteins, the simplest form of repression involves
protein-protein interactions that block the function of activators. Interaction of
the repressor might simply mask either the DNA-binding and/or transcriptional
activation function of the activator. For example, Gal80 represses transcrip-
tional activation by Gal4 by functionally blocking the Gal4 activation domain
(89). However, as GalS0 is tightly associated with Gal4 under all physiological
conditions, repression is not simply due to masking but requires a conforma-
tional change in Gal4 and/or Gal80 (86).

While these repression mechanisms differ in molecular detail, they share
important properties. First, they generally operate at the level of an individual
gene or set of genes. Second, these repression mechanisms generally occur by
inhibiting the function of activators, and they are fairly straightforward at the
molecular level. Third, these repression mechanisms are indirect; i.e. they
block the stimulatory function of specific activators rather than directly inter-
feting with the basic transcription machinery or the chromatin template.

Global Repression by Chromatin

Eukaryotie organisms also have a variety of global repression mechanisms that
negatively regulate the transcription of many apparently unrelated genes. The
most general repression mechanism involves nucleosome coating of the DNA
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template, which severely restricts access of transcriptional regulatory proteins
to promoters (46). Disruption of the normal nucleosome structure by histone
loss (48), change in histone dosage (21), histone mutations (91), or 
(dA:dT) sequences (60) results in increased transcription. Nucleosomal repres-
sion is mechanistically simple and affects the transcription of all genes. How-
ever, differences in intrinsic nucleosome positioning and stability as well as
differences in the ability of specific activators and TBP to interact with nu-
cleosomal templates can affect the extent to which individual genes are affected
in vivo.

Yeast contains several nonhistone proteins that may be involved in global
repression by chromatin. These include Sinl(Spt2), which bears some simi-
laxity to the mammalian chromatin-associated HMG1 protein (79), Sin4 (61),
and Spt4-Spt5-Spt6, which likely exists as a multiprotein complex (132).
Mutations in these genes cause diverse transcriptional phenotypes that are very
similar to those caused by certain histone mutations. In particular, increased
transcription is observed from promoters lacking functional upstream elements.
In addition, plasmids in sin4 mutant strains have decreased superhelicity,
possibly reflective of a change in nucleosomal density (61). The mechanism(s)
by which these proteins affect chromatin structure remain to be established.

Global Repression by Direct Inhibition of the Basic
Transcription Machinery

Another global repression mechanism involves proteins that interfere directly
with a component(s) of the basic transcription machinery. As is the case with
nueleosomal repression, inhibitors of basic transcription factors should re-
press all genes, although individual genes will be affected to various extents.
Motl, an ATP-dependent inhibitor of TBP binding to the TATA element,
negatively affects the transcription of many, but not all, genes (4). Although
the biochemical mechanism of repression seems clear, no obvious pattern
distinguishes genes that are repressed from those that are not affected. Al-
though repression is quantitatively modest (typically two- to fivefold) 
individual genes, Motl is essential for cell growth, probably because it affects
a wide spectrum of genes and alters the stoichiometry of essential macro-
molecular complexes.

The NOT complex, which contains Notl(Cdc39), Not2(Cdc36), Not3, 
Not4(Mot2), acts as a global repressor (22). not mutations differentially affect
TATA-element utilization in the HIS3 promoter in a manner that does not
depend on upstream promoter elements or transcriptional activators and that
is distinct from chromatin-based repression. These observations strongly sug-
gest that the Not complex inhibits the basic transcription machinery, with likely
targets being TBP, TAFs, and perhaps TFIIA.
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Transcriptional Corepressors That Affect Multiple Biological
Pathways

The Cyc8(Ssn6)-Tupl complex does not bind to specific promoter sequences,
but it is required for transcriptional repression of genes regulated by glucose,
oxygen, cell-type, and DNA-damage. Although repression of these distinct
classes of genes requires pathway-specific DNA-binding proteins such as Migl
(101), Roxl (7), and c~2 (44, 67), binding to their cognate operators 
sufficient (68). Conversely, both Cyc8 and Tupl strongly repress transcription
when artificially recruited to a functional promoter (68, 141). These observa-
tions indicate that CycS-Tupl acts as corepressor that is recruited to promoters
via pathway-specific DNA-binding proteins.

Different regions of the Cyc8-Tupl complex are involved in recruitment of
the corepressor to the various classes of promoters. For cell-type genes, re-
cruitment occurs by the direct interaction of c~2 with the WD motifs of Tupl
(77). However, distinct TPR motifs of Cyc8 are required for recruitment 
oxygen-regulated (TPR4-7) and glucose-regulated (TPR8-10) genes; the 
motifs of Tupl are not important (142). Although it is unknown whether these
distinct TPR motifs directly interact with Roxl and Migl, TPR1-3 directly
interacts with "l’upl, indicating that the TPR motifs mediate specific protein-
protein interactions (142). Thus, differential recruitment involves specific pro-
tein-protein interactions between distinct surfaces of Cyc8-Tupl and struc-
turally dissimilar DNA-binding proteins.

Cyc8-Tupl inhibits transcription when recruited upstream of a heterologous
promoter, suggesting that repression occurs by an active mechanism rather
than by steric hindrance (68, 141). The transcriptional repression function 
the Cyc8-Tupl complex is mediated by a specific domain of Tupl (141).
Within this domain, short nonoverlapping regions with minimal sequence
similarity can independently mediate repression, suggesting that the Tupl
repression domain interacts with a component(s) of the basic machinery. Fur-
thermore, Cyc8-Tupl can repress basal transcription in vivo (141) and in vitro
(54). Although the mechanism of repression has yet to be elucidated, mutations
affecting certain components of the Pol II holoenzyme partially alleviate re-
pression by Cyc8-Tupl; perhaps these components functionally interact with
the Tupl repression domain (80, 146).

Transcriptional corepressors such as Cyc8-Tupl have the potenti~il to coor-
dinate the regulation of distinct biological pathways. Sin3, a negative regulator
of many genes, may represent another such corepressor. Like CycS-Tup 1, Sin3
does not appear to bind DNA, and it represses transcription when artifically
recruited upstream of a functional promoter (147). A mammlian homologue
of Sin3 interacts directly with Mad and Mxi 1, two DNA-binding proteins, and
it is likely to be involved in Mad- and Mxi 1-dependent repression in vivo (6,
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117). Although presumed to exist, DNA-binding proteins that depend on Sin3
for transcriptional repression in yeast have yet to be identified.

Mating-Type and Telomeric Silencing By Heterochromatin

The mating-type silencer represses transcription when located > 2 kb up-
stream or downstream of promoters. Silencer function requires binding of
Rapl and Abfl, proteins that are transcriptional activators in other promoter
contexts, and the DNA origin recognition complex (83, 113). Rapl associates
with Rill (50) and a complex of Sir proteins (97), and these interactions 
critical for silencing, but not for activation. Artificial recruitment of Sirl to
a promoter can establish silencing in a manner that requires the other Sir
proteins (20).

Silencing probably involves the establishment of a repressed chromatin
state. Silencing is abolished by mutations in N-termini of histones H3 or H4
(66, 95, 138), and the repressed state is inherited epigenetically in strains that
lack Sirl or that have a partially disabled silencer (90, 104). The N-termini 
histones H3 and H4 interact directly with Sir3 and Sir4, and mutations that
disrupt these interactions prevent silencing (51). These observations suggest
Rapl recruits the Sir complex to the silencer, and that interactions between
the Sir complex and the N-termini of histones H3 and H4 lead to a specialized
chromatin structure that represses transcription over a relatively long distance
(51). This specialized chromatin structure could repress the basic transcription
machinery by blocking its accessibility to the promoter and/or by disrupting
its communication with upstream activators.

Telomerie silencing, the repression of genes located near telomeres, occurs
by a similar mechanism. As is the case for the mating-type silencer, telomeric
silencing is epigenetically inherited (42), and it requires Rapl, Sir2--4, and
histones H3 and H4 (1, 82, 138). Furthermore, Rapl interacts with the C~_3A
telomeric repeats, the DNA sequence necessary for repression that spreads
continuously over a 3-5 kb range away from the telomere (112). Although
Sirl, Abfl, Rifl, and the DNA origin recognition complex do not seem to be
involved, artificial recruitment of Sirl greatly improves telomeric silencing
(20). The chromosome regions around the mating-type silencer and the telo-
mere resemble heterochromatin in that they have a condensed chromatin struc-
ture, replicate in late S phase, are localized near the nuclear envelope, and
repress transcription in an epigenetic manner (137). Hence, it appears that
mating-type and telomeric silencing involve a heterochromatic state at particu-
lar chromosomal locations that is mediated by binding of Rapl followed by
recruitment of the Sir complex. A difference between mating-type and telo-
meric silencing involves Sirl, which converts this heterochromatic state into
a form that is stably inherited.
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TRANSCRIPTIONAL REGULATION

A variety of mechanisms are utilized to regulate the amounts or activities of
many yeast transcription factors in response to environmental or developmental
stimuli.

Regulation by Controlling Protein Level

Regulation of mating type genes is achieved by the appropriate transcription
factors being present only in the correct cell type. Heteromeric complexes
composed of cell type-specific (t~l, ct2, al), and ubiqitously expressed proteins
(Mcml) play a critical role in this regulation. Diploid cells contain al and ct2,
homeodomain proteins that heterodimerize and mediate repression of haploid°
specific genes. A surprising aspect of this interaction is that a short region of
ct2 causes a conformational change in al that greatly increases its inherent
DNA-binding activity (124). In ~x cells, tx2 interacts with Mcml to bind the
complex operators that mediate repression of al-specific genes, tx2 and Mcml
can independently bind to the operator, but a cooperative interaction between
them is necessary for high affinity binding and transcriptional repression (120).
In ~ cells, Mcml also cooperates with ~xl to form a complex necessary for
DNA-binding and transcriptional activation of or-specific genes (14). In this
case, Mcml undergoes a conformational change upon binding (134).

The levels of several yeast activators are regulated in a manner that is
consistent with and responsible for their biological functions. Gcn4, which
activates many genes involved in protein synthesis, is subject to a novel
translational control mechanism that ensures that its synthesis occurs only
under conditions of amino acid starvation, UV irradiation, or rapid nutritional
downshift (29, 34). By being regulated at the translational level, Gcn4 
sensitive to the process it controls. Gcn4 levels are also regulated in response
to starvation by ubiquitin-dependent proteolysis (78). Glucose-regulated ex-
pression of Gal4 provides a sensitive switch for expression of the GAL genes,
particularly in promoters where Gal4 binds cooperatively to multiple sites (45).
Cell-cycle regulated expression of Swi4 (12), Swi5 (100), and Ace2 
contributes to restricting the transcription of target genes to specific times in
the cell cycle.

Regulation by Small Molecules

Small molecules can directly regulate either the DNA-binding or transcrip-
tional activities of a number of yeast activators. Binding of Hapl, which
activates many genes in response to oxygen, requires heine. Heme unmasks
the Hap 1 DNA-binding domain by directly binding to short repeated sequences
in an adjacent region of the protein (150). Acel, an activator of a protein
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critical for copper detoxification, requires copper for folding of the DNA-bind-
ing domain (38). Transcriptional activation, but not DNA binding, by Leu3
requires ~-isopropylmalate, a metabolic intermediate of the leucine pathway
(133).

Regulation by Protein Modification

Phosphorylation is the predominant mechanism by which yeast transcription
is modified in response to environmental stimuli. The heat shock factor (HSF)
activation domain is rapidly phosphorylated in response to high temperature,
with the degree of phosphorylation being strongly correlated with transcrip-
tional activity (122). Similarly, Stel2 becomes transcriptionally active upon
the rapid phosphorylation of its activation domain in response to mating
pheromones (121). Phosphorylation of Pho4 by the CDK-cyclin complex
Pho80/Pho85 inhibits transcriptional activation (64). The CDK inhibitor Pho81
blocks this phosphorylation under conditions of low phosphate, thereby con-
ferring phosphate-dependent regulation of the target genes (116). Protein ki-
nase A, the ultimate effector of the Ras pathway, mediates growth-regulated
expression of ribosomal protein genes by increasing the transcriptional activity
of Rapl (75); it also inhibits Yapl DNA-binding activity under nonstressed
conditions (43). In both cases, it is unknown if there is direct phosphorylation
of the activator proteins. Phosphorylation of the Gal4 activation region in
response to galactose is also observed, but this appears to be a consequence
rather than a cause of increased transcriptional activity (115). As mentioned
previously, galactose induction of Gal4 activity is mediated by a regulated
interaction of its activation domain with Gal80.

Regulation by Nuclear Localization

Swi5, a transcription factor that controls mating-type switching through the
HO endonuclease, is regulated at the level of nuclear entry. Swi5 is cytoplas-
mically localized throughout most of the cell cycle, but is translocated into the
nucleus as cells enter G~ (99). Cdc28 phosphorylates three serine residues 
the Swi5 nuclear localization signal, but only when the protein is in the
cytoplasm (96). Thus, dephosphorylation of the nuclear localization signal due
to the cell cycle-dependent destruction of Cdc28 kinase is important for
regulating Swi5-dependent transcriptional activation. A related transcription
factor, Ace2, is likely to be regulated by a similar mechanism. Ace2 is required
for cell-cycle specific expression of chitinase, but when overexpressed, it can
partially subsitute for the function of Swi5 (30). Like Swi5, Ace2 is synthesized
only during the G2/M phases and is transported to nuclei only during G~.
Despite their similar structures and patterns of regulation, Swi5 and Ace2
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differentially affect target genes (30), in part because of differences in binding
cooperatively with proteins such as Grfl0 (11).

CONCLUDING COMMENTS

Transcriptional regulation in yeast follows the same principles and uses the
same basic mechanisms as in other eukaryotes. Indeed, yeast has contributed
much of our current knowledge about eukaryotic a’anscriptional regulatory
mechanisms. Future work will be directed at three major questions. First, how
do activators and repressors affect the activity of the basic transcription ma-
chinery and/or the chromatin template under physiological conditions? A va-
riety of mechanisms are likely to be utilized, but they remain to be elucidated.
Second, how are the activities of transcriptional regulatory proteins altered to
stimulate or repress gene expression? At present, there is limited information
about the physiologically relevant signals, the pathways by which these signals
are transmitted to the transcription factors, and the structural bases and bio-
chemical consequences that occur when transcription factors are modified
and/or associate with small molecules or other proteins. Third, how are the
various regulatory pathways integrated to provide both the evolutionary sta-
bility of the organism and the ability to rapidly adapt to environmental change?
Continued genetic and biochemical experiments combined with information
from the genome sequencing project should increasingly converge and con-
tribute to understanding the overall logic by which yeast cells regulate their
genes.

Any Annual Review chapter, as well as any article cited in an Annual Review chapter,
may b¢ purchased from the Annual Reviews Preprints and Reprints service.
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