
but had little effect on binding of TBP to the
TAFdep promoters of the ACT1 and RPS5
genes (Fig. 4).

In summary, we have identified two dis-
tinct classes of yeast promoters based on their
requirement for TAFs. At TAFdep promoters,
TAFs are recruited and are required for de-
livery of TBP (19). Recruitment of TAFs to
TAFdep promoters is activator dependent but
appears to be relatively independent of other
GTFs—surprisingly, even TBP. These data
are consistent with the possibility that, at
TAFdep promoters, TAFs are directly targeted
by activators, which results in recruitment of
TAFs and TBP. The notion that TAFs may be
direct targets of some activators is consistent
with a variety of biochemical studies (1).

For TAFind promoters, TAFs are not re-
quired for transcriptional activity or for TBP
recruitment (19). The same assay that revealed
the approximate stoichiometric association of
TAFs and TBP with TAFdep promoters showed
that the level of TAF association with these
promoters is close to background. These results
strongly suggest that TBP is recruited to TAFind

promoters in the absence of TAFs, perhaps
alone or in a complex with other proteins (20).
The absence of TAFs on TAFind promoters in
wild-type cells confirms their dispensability for
transcription of certain genes, a conclusion in-
dependently derived from yeast TAF inactiva-
tion studies (2–6, 21).

Although recruitment of TBP to TAFind pro-
moters does not require TAFs, there is a strong
dependence on GTFs, such as TFIIB and Srb4.
These results are consistent with the possibility
that, at TAFind promoters, the activator targets
one of these GTFs, either directly or through
another component, which through cooperative
interactions ultimately promotes TBP binding
and transcription.
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TAF-Containing and TAF-Independent
Forms of Transcriptionally Active

TBP in Vivo
Laurent Kuras, Peter Kosa, Mario Mencia, Kevin Struhl*

Transcriptional activity in yeast strongly correlates with promoter occupancy
by general factors such as TATA binding protein (TBP), TFIIA, and TFIIB, but not
with occupancy by TBP-associated factors (TAFs). Thus, TBP exists in at least
two transcriptionally active forms in vivo. The TAF-containing form corresponds
to the TFIID complex, whereas the form lacking TAFs corresponds to TBP itself
or to some other TBP complex. Heat shock treatment altered the relative
utilization of these TBP forms, with TFIID being favored. Promoter-specific
variations in the association of these distinct forms of TBP may explain why only
some yeast genes require TFIID for transcriptional activity in vivo.

Eukaryotic RNA polymerase II (Pol II) re-
quires auxiliary factors to recognize promot-
ers. The primary promoter recognition factor
is TFIID, a complex that consists of TBP and

about 10 TAFs (1). TBP binds TATA ele-
ments, which are found in most promoters,
and it interacts with general transcription fac-
tors TFIIA and TFIIB (2). In yeast, TBP is
generally required for Pol II transcription (3),
and the level of TBP occupancy of promoters
is correlated with transcriptional activity (4,
5). In the context of TFIID, certain TAFs
directly contact initiator or downstream pro-
moter elements (6). For this reason, TAFs are
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Fig. 4. Requirement of
TFIIB and Srb4 for recruit-
ment of TBP and TAFs to
TAFdep promoters. TFIIB
(11) and Srb4 (18) ts mu-
tant strains were grown
at 23°C and shifted to
37°C for 1 hour; associa-
tion of TBP and TAFs was
analyzed as in Fig. 3.
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important for transcription in vitro from pro-
moters lacking TATA elements, although
they are dispensable for basal TATA-depen-
dent transcription.

Analysis of the physiological functions of
the TAF subunits of TFIID is complicated by
the presence of certain TAFs in the SAGA
histone acetylase complex (7). Many studies
suggest that, in the context of TFIID, TAF
subunits are not generally required for tran-
scription because depletion or inactivation of
individual TFIID-specific TAFs affects only
a subset of genes (8–12). These results sug-
gest that, with respect to functions within
TFIID, there are distinct TAF-dependent and
TAF-independent promoters, although this
view has been challenged (13). In contrast to
the TFIID-specific TAFs, TAFs that are
present in both the TFIID and SAGA com-
plexes are broadly required for transcription
(12, 14).

If TFIID is present at both TAF-depen-
dent and TAF-independent promoters, the
TAF/TBP occupancy ratio should be con-
stant at all promoters. To investigate this
issue, we used chromatin immunoprecipita-
tion to measure promoter occupancy by three
TFIID-specific TAFs (TAF130, TAF150, and
TAF40); TAF17, which is present in both
TFIID and SAGA (15); and TBP. This ap-
proach permits analysis of TAFs in wild-type
cells under physiological conditions.

The TAF/TBP occupancy ratio varies
considerably among promoters (Fig. 1).
When normalized to levels of TBP occupan-
cy, the TAF-dependent TRP3 (8, 12) and ribo-
somal protein gene promoters RPS8A, RPL9A,
and RPL5 (9, 16) had six to seven times
higher levels of TAFs than TAF-independent
promoters such as ADH1, PGK, and PYK.
TAF occupancy at the ACT1 and EFT2 pro-
moters was half that observed on the ribo-
somal protein gene promoters. When normal-
ized to TBP occupancy levels, the relative
levels of all four TAFs tested were similar.
Thus, these TAFs, and hence TFIID, were
underrepresented at TAF-independent pro-
moters. Similar observations for these and
three additional TAFs have been obtained
independently (17).

Because TBP occupancy is correlated
with transcriptional activity (4, 5), the under-
representation of TAFs at certain promoters
suggests that there is a TAF-independent
form of transcriptionally active TBP in vivo.
To test this, we examined the occupancy of
TFIIB and TFIIA at the same promoters (Fig.
2) and found that the TFIIA/TBP occupancy
ratios were constant (within an experimental
error of 630%). Thus, associations of TBP,
TFIIA, and TFIIB were very strongly corre-
lated with each other, whereas the relation-
ship with TAF association was much more
variable. This observation indicates that re-
cruitment of TAFs to promoters does not

necessarily coincide with recruitment of
TFIIA and TFIIB.

We next examined activator-dependent
recruitment of TFIID by monitoring TAF
occupancy at promoters whose transcription
is induced by heat shock factor or the Msn2
and Msn4 activators (Fig. 3, A to C). In all
cases tested, TAF occupancy increased upon
heat shock, which indicates that these activa-
tors increase recruitment of TFIID. The TAF/
TBP occupancy ratios suggest that TFIID
is underrepresented at heat shock–inducible
promoters (18). Occupancy by TAF17 was
two times higher than occupancy by the other
TAFs, which suggests the possibility of acti-

vator-dependent recruitment of the SAGA
complex (19). Interestingly, heat shock caused
a two- to threefold increase in the TAF/TBP
occupancy ratio at several promoters whose
levels of transcription were unaffected (Fig.
3, D to F). This increased TAF occupancy
was not due to more efficient crosslinking at
high temperature because it was not observed
at the uninducible TRP3 and ARF1 promot-
ers, which have inherently high TAF/TBP
occupancy ratios (18).

Several lines of evidence indicate that our
experiments provide quantitative measure-
ments of promoter occupancy and are not
influenced by conformational changes in pro-

Fig. 1. TAF and TBP occupancy at selected promoters. Crosslinked chromatin preparations from
strains containing triple hemagglutinin (HA3)-tagged or untagged TAF130 (A), TAF40 (B), TAF150
(C), and TAF17 (D) were immunoprecipitated with monoclonal antibody to HA or polyclonal
antibody to TBP (4). Polymerase chain reaction products corresponding to the indicated Pol II
promoters, the tRNAArg (ACG) Pol III promoter, and the POL1 structural gene were generated from
total chromatin or immunoprecipitated DNA. For each promoter, the relative TAF/TBP occupancy
ratio is indicated in terms of the percent of the maximal observed ratio, which is arbitrarily defined
as 1.0 (21).
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teins or DNA that affect crosslinking efficiency.
First, associations of TBP, TFIIB, and TFIIA
with promoters are remarkably well correlated
with each other, even though individual pro-
moter sequences are typically unrelated. Sec-
ond, the relative occupancies of the four TAFs
tested are strongly correlated with each other.
Thus, any promoter-specific conformational
difference that affects TAF crosslinking would
have to affect all TAFs in a quantitatively sim-
ilar manner. Third, the absolute level of
crosslinking is comparable for all four TAFs,
even though homologs of TAF17, TAF130, and
TAF150 contact promoter DNA to various ex-
tents (6), and there is no evidence that ho-
mologs of TAF40 contact DNA. Similarly,
chromatin immunoprecipitation has been ap-
plied successfully to many proteins that do not
directly contact DNA (20). Thus, protein-pro-
tein crosslinks that occur in the vicinity of the
promoter contribute significantly (and perhaps
predominantly) to the observed crosslinking to
DNA, and it is unlikely that protein-protein
interactions within TFIID will change when it is
bound to different promoters. For these
reasons, the reduced levels of multiple
TAFs at certain promoters is almost cer-
tainly due to the absence of these TAFs,
and hence TFIID, at these promoters.

Our results provide strong evidence for at
least two transcriptionally active forms of TBP
in vivo (Fig. 4). One form corresponds to
TFIID and is defined here by the association of
the four TAFs tested with promoters and by a
TAF/TBP ratio of 1.0 (21). The other form
lacks the four TAFs tested (and probably other
TAFs present in the TFIID complex) and is
defined by promoters whose TAF/TBP occu-
pancy ratio is significantly less than 1. This
TAF-independent form might correspond to
TBP itself, or it might be another TBP com-
plex. For simplicity, we consider the TAF-
independent form to be a single entity, al-
though multiple TAF-independent forms of
transcriptionally active TBP are possible. In
addition, our results do not exclude the pos-
sibility of transcriptionally active forms of
TBP containing a subset of TAFs.

TFIID and the TAF-independent form(s) of
TBP have distinct promoter selectivities. At one
extreme, TFIID is the predominant (and per-
haps exclusive) form of TBP at the TAF-depen-
dent promoters. At the other extreme, the TAF-
independent form predominates at the TAF-
independent promoters, although TFIID may
represent 10 to 20% of the transcriptionally
active TBP. For the other promoters tested, the
relative association of the two forms falls
along a continuum between these extremes.
The fact that heat shock–inducible promoters
have intermediate TAF/TBP occupancy ra-
tios suggests that heat shock factor and the
Msn2 and Msn4 activators increase recruit-
ment of both TFIID and the TAF-indepen-
dent form of TBP.

The relative association of TFIID and the
TAF-independent form of TBP is also affect-
ed by environmental conditions. Specifically,
heat shock causes an increased TAF/TBP
occupancy ratio at five of seven promoters
that are transcriptionally unaffected; the two
exceptions, TRP3 and ARF1, have the maxi-
mal TAF/TBP occupancy ratio of 1 even
under normal growth conditions. The sim-
plest interpretation of these results is that heat
shock differentially affects the activity or
amount of the two TBP forms, so that the
relative utilization of TFIID is increased
genome-wide, except for promoters where
TFIID already predominates (Fig. 4).

The existence of a TAF-independent form
of TBP in wild-type strains provides a simple
explanation for the observation that transcrip-
tion of many genes is unaffected upon de-
struction of TFIID by depletion of TFIID-
specific TAFs (8–12). The low TAF occu-
pancy at many promoters argues that the
broad transcriptional effects reported to occur
upon inactivation of the TFIID-specific
TAF40 are indirect (13). In contrast, TAF-
dependent promoters have high levels of TAF
(and hence TFIID) occupancy, presumably
because the TAF-independent form of TBP is
not stably associated and hence not transcrip-
tionally active. Because TFIID-specific TAFs
contact DNA in the core promoter region (6)
and have core-specific functions in vivo (8,
10, 12), differential occupancy by the distinct
forms of TBP may reflect promoter-specific
variations in the requirement for TAFs to
stabilize TBP association.

The presence of TFIID-specific TAFs at

all promoters tested suggests that TFIID con-
tributes to transcription of most, and perhaps
all, genes. However, at many promoters, this
contribution is small compared with that of
the TAF-independent form of TBP. Thus, the
broad decrease in transcription observed
upon depletion of TAFs present in TFIID and
SAGA (12, 14) cannot be explained simply
by destruction or inactivation of TFIID. Be-
cause SAGA-specific components are not es-
sential for growth (22), widespread effects
caused by depletion of certain TAFs are like-
ly due to the simultaneous inactivation of
TFIID and SAGA (and perhaps other TAF-
containing complexes). Interestingly, TAF17,
which is present in TFIID and SAGA and is
broadly required for transcription, is under-
represented at many promoters to the same
extent as the TFIID-specific TAFs. We sus-
pect that, in the context of SAGA, TAF17
associates only transiently with promoters
and/or is crosslinked with low efficiency.

The core RNA polymerases from bacte-
ria and eukaryotes do not bind specific
sequences. In bacteria, promoter recogni-
tion is provided by multiple s factors that
interact with the core RNA polymerase and
direct the enzyme to specific classes of
promoters. Many eukaryotes have distinct
TBP-like proteins that show promoter spec-
ificity in vivo (23). In contrast to these
structurally distinct promoter-recognition
factors, yeast TBP exists in at least two
distinct forms that differentially associate
with promoters in vivo. These two forms
may have distinct sequence recognition
properties per se, and they may differ with

Fig. 2. TFIIB, TFIIA, and TBP occupancy at selected promoters. Crosslinked chromatin preparations
from strains containing HA3-tagged or untagged TFIIB were immunoprecipitated with monoclonal
antibody to HA or polyclonal antibody to TBP or TFIIA. Experiments were done as in Fig. 1. For each
promoter, the relative TFIIB/TBP (A) or TFIIA/TBP (B) occupancy ratio is indicated; a value of 1.0 is
arbitrarily defined as the average ratio. ND 5 not determined.
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respect to their ability to functionally inter-
act with activators, repressors, or other
transcriptional regulatory proteins.
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A Mutation in PRKAG3
Associated with Excess
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A high proportion of purebred Hampshire pigs carries the dominant RN 2

mutation, which causes high glycogen content in skeletal muscle. The mutation
has beneficial effects on meat content but detrimental effects on processing
yield. Here, it is shown that the mutation is a nonconservative substitution
(R200Q) in the PRKAG3 gene, which encodes a muscle-specific isoform of the
regulatory g subunit of adenosine monophosphate–activated protein kinase
(AMPK). Loss-of-function mutations in the homologous gene in yeast (SNF4)
cause defects in glucose metabolism, including glycogen storage. Further anal-
ysis of the PRKAG3 signaling pathway may provide insights into muscle phys-
iology as well as the pathogenesis of noninsulin-dependent diabetes mellitus
in humans, a metabolic disorder associated with impaired glycogen synthesis.

The presence of a dominant mutation (denot-
ed RN2) in Hampshire pigs with large effects
on meat quality and processing yield was first
recognized by segregation analysis of pheno-
typic data (1). Meat from RN– pigs has a low
ultimate pH (measured 24 hours after slaugh-
ter), a reduced water-holding capacity, and

gives a reduced yield of cured cooked ham (2,
3). These effects are due to a ; 70% increase
in muscle glycogen content in RN– (RN2/
rn1 or RN2/RN2) animals. No pathological
effects of the RN2 mutation have been re-
ported, and it does not cause a glycogen
storage disease. Because the RN2 allele has
been found only in Hampshire pigs, it is
likely that the mutation arose in this breed
and has increased in frequency due to its
favorable effects on growth rate and meat
content in the carcass (3). The RN2 allele is
of considerable economic significance in the
pig breeding industry, and most breeding
companies would like to eliminate the muta-
tion because of its negative effects on pro-
cessing yield.

To identify the RN2 mutation, which re-
sides on pig chromosome 15 (4–6), we
screened a porcine Bacterial Artificial Chromo-
some (BAC) library (7) and constructed a 2.5
megabase pair (Mbp) contig of the RN region
(Fig. 1C). The BAC clones were used to devel-

op new genetic markers in the form of micro-
satellites (MS) and single nucleotide polymor-
phisms (SNPs). The markers were used to con-
struct a high-resolution linkage map based on
1019 informative meioses (8) (Fig. 1A). We
could exclude RN from the region proximal to
SLC11A1 and distal to SNP S1010. A porcine
radiation hybrid panel was exploited for high-
resolution mapping of genetic markers and cod-
ing sequences (9) (Fig. 1B). The corresponding
region on human chromosome 2q and mouse
chromosome 1 did not contain any obvious
candidate genes for RN. Linkage disequilibrium
analysis indicated complete association be-
tween RN2 and marker alleles at S1006 and
S1007 (Fig. 1D). These marker alleles most
likely define the haplotype in which the RN2

mutation arose. The two markers are present on
the overlapping BAC clones 127G6 and
134C9, suggesting that RN may reside on the
same clone or on one of the neighboring clones.

A shotgun library of the BAC clone
127G6 was constructed and more than 1000
individual sequences were determined and
assembled into contigs (10). BLAST (11)
searches of the National Center for Biotech-
nology Information (NCBI) nucleotide data-
base (12) yielded three convincing matches
of coding sequences. Two of these were
matched to human cDNA sequences or genes
(KIAA0173 and CYP27A1) but did not appear
to be plausible candidate genes for RN. The
third coding sequence in BAC 127G6 showed
significant sequence similarity to AMP-acti-
vated protein kinase (AMPK) g subunits, in-
cluding Snf4 in yeast. AMPK has a key role
in regulating energy metabolism in eukaryot-
ic cells and is homologous to the SNF1 ki-
nase in yeast (13, 14). AMPK (SNF1) is
composed of three subunits (the analogous
designations in yeast are given in parenthe-
ses): the catalytic a chain (Snf1) and the two
regulatory subunits b (Sip1, Sip2, and Gal83)
and g (Snf4). AMPK is activated by an in-
crease in the ratio of AMP to adenosine
triphosphate (AMP:ATP). Activated AMPK
turns on ATP-producing pathways and inhib-
its ATP-consuming pathways. AMPK can
also inactivate glycogen synthase, the key
regulatory enzyme of glycogen synthesis, by
phosphorylation (13). Several isoforms of the
three different AMPK subunits are present in
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