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SUPPLEMENTAL RESULTS 

 

Annotation and validation of identified transcripts 

 Comparison of the location of transfrags to the gene map of E. coli MG1655 (Keseler et 

al., 2005) to a gene map rotated 1 Mb (essentially random data) confirms a highly significant 

concordance between the coordinates of transfrags and the boundaries of annotated genes  

(χ2 p = 1.2e-316).  We identified 210 transfrags that did not match annotated transcripts (see 

Supplementary Methods). We manually selected 58 of these that appeared to represent bona 

fide novel transcripts (9 intragenic, 25 antisense, and 24 intergenic; Table S2); the remainder 

consisted largely of fragments of very lowly expressed transcripts and were thus deemed 

artifacts. 16 of the 58 unannotated transcripts have either been previously reported as novel 

transcripts (Tjaden et al., 2002) and/or computationally predicted (Carter et al., 2001; Chen et 

al., 2002; Rivas et al., 2001; Saetrom et al., 2005). 

 Promoters in E. coli and other prokaryotes are enriched in relatively low melting 

temperature (Tm) regions that we refer to as Tm troughs (Kanhere and Bansal, 2005).  We 

first determined the central positions of all Tm troughs in the genome whose depth is greater 

than 2°C. We then determined the minimum distance between each of the 58 novel transfrag 

5’ ends and a Tm trough, comparing this distribution of distances to that generated using 

rotated (i.e. randomized) transfrag coordinates. The 5’ ends of novel transfrags are highly 

enriched in their proximity to Tm troughs relative to the rotated data (Mann-Whitney p = 

2.6e-6), strongly suggesting that these novel transfrags are transcribed from genuine 

promoters. 

 



Annotation and validation of identified σ70 promoters 

We compared our σ70 ChIP peak coordinates to 484 known σ70 binding sites and the same 

number of negative control sites and determined for each σ70 peak whether a control 

coordinate was found within a series of absolute distances (see Supplementary Methods). 

The resulting data were used to obtain conservative estimates for the specificity, sensitivity, 

and false discovery rate (FDR) of our peak calls (Figure S1). Using a 180 bp threshold (see 

Supplementary Methods) for the distance allowed between observed and expected σ70 sites, 

the specificity, sensitivity, and FDR are 98.8%, 62.6%, and 1.9%, respectively.  The 62.6% 

sensitivity is comparable to that observed in a ChIP-chip study of RNAP immobilized at 

promoters by treatment with rifampicin (Herring et al., 2005). 

 We observe a highly significant overlap between the location of the 1286 σ70 peaks 

identified here and the 1111 rifampicin-immobilized RNAP ChIP peaks (Herring et al., 

2005): 58% of σ70 peaks are within ±300 bp of immobilized RNAP peaks, compared to 15% 

for a random model in which the coordinates of the former are rotated 1 Mb around the 

chromosome. We also performed wavelet analysis (Herring et al., 2005) to identify any 

periodic patterns in the binding of σ70 across the entire genome. We identified a statistically 

significant periodicity of ~700 kb-1 (Figure S2), similar to the one observed previously in 

studies of genome-wide transcription and immobilized RNAP (Allen et al., 2003; Herring et 

al., 2005; Jeong et al., 2004). 

 We conservatively annotated σ70 peaks with respect to known and predicted transcripts, 

and to annotated genes with no known or predicted σ70-dependent promoters (see 

Supplementary Methods; Tables S5, S6). Given the density of σ70 peaks, the density of 

potential transcript starts across the E. coli genome, and the effective accuracy and resolution 

of the ChIP-chip data, σ70 peaks were often associated with more than one possible 

transcription unit; 555 peaks were of this kind (Class D peaks). Approximately the same 

number of peaks could be associated with a unique transcript start site, with most (405) 

corresponding to known or predicted σ70 promoters (Class C) and the remaining 165 peaks 

being associated with the 5’ ends of genes that are not known or predicted to be transcribed 

by Eσ70 (Class B) (Bockhorst et al., 2003; Keseler et al., 2005). 51 genes associated with 

Class B σ70 peaks (e.g., malY, cheA, and nuoF) lie within known Eσ70 operonic transcripts 

(Tjaden et al., 2002; Keseler et al., 2005); the rest lie within solely computationally predicted 



operons (Bockhorst et al., 2003). Thus, many genes are transcribed both from a dedicated 

promoter immediately upstream, and as a downstream gene in an operon. 

 We also observe 161 σ70 peaks within the coding sequences of genes (Class A; e.g., 

uhpT, xylG, and yagX; Figure 2) and in the intergenic regions between convergently 

transcribed genes (e.g., between yncC and yncD). Although these peaks tend to be of lower 

height relative to those of the entire set of σ70 peaks (Table S5), as a whole they tend to be 

proximal to Tm troughs relative to rotated data (Mann-Whitney p = 3.4e-7), indicating that 

these ChIP peaks are likely highly enriched in real promoters. Significantly, 39% of them 

were also noted (±300 bp) in the rifampicin RNAP ChIP-chip study (Herring et al., 2005). 

Also, as would be expected, Class A peaks are observed at a much lower frequency than 

would be expected by chance: 12.5% versus 62.7%, respectively (Table S5). We speculate 

that most of these unusual binding sites represent the promoters of unknown/misannotated 

protein-coding genes or small noncoding RNAs that have not been hitherto described. 

Indeed, some of these σ70 peaks are associated with novel transfrags identified in our 

transcript analysis, e.g., at the 3’ end of uhpT (Figure 2A). 

 

Half-life analysis of genes that bind “poised” RNAP 

It is possible that sites of “poised” RNAP represent regions are in fact transcribed, but that 

express transcripts of particularly short half-life. However, based on the results of a genome-

wide determination of E. coli transcript half-lives (Selinger et al., 2003), genes associated 

with non-transfrag-associated σ70 peaks do not have statistically significant shorter half-lives 

than those with transfrag-associated ones (Figure 3). Alternatively, non-transfrag-associated 

peaks could be somehow artifactual. However, they are in fact strongly enriched for being 

proximal to the 5’ ends of annotated gene starts (χ2 p = 1.2e-13), strongly suggesting that 

most of them are biologically meaningful. On average, non-transfrag-associated peaks are of 

lower σ70 ChIP signal, but there is an extensive region of overlap between the peak height 

distributions of the two classes (Figure 3), demonstrating that transcriptional activity is not 

completely dependent on the level of promoter-bound RNAP. 



SUPPLEMENTAL EXPERIMENTAL PROCEDURES 

 

Probe BLAST analysis. We BLASTed all 382177 50-mer probe sequences against the 

MG1655 genome to generate for each probe a cross-hybridization score, defined as -log10(E-

value) of its second-best BLAST hit. When plotting genome coordinate versus cDNA or 

ChIP signal, probes with multiple exact hits were treated as multiple points on the coordinate 

axis. 

 

Data Preprocessing. cDNA and ChIP datasets exhibited good raw reproducibility 

(Spearman r ≥ 0.84). Raw cDNA data were linearly scaled such that both datasets had the 

same total hybridization intensity; no other normalization was performed. For ChIP data, we 

computed the genomic-DNA-normalized log2 IP/control ratio for each probe, positivized the 

data by adding to each log ratio the negative of the lowest such ratio (due to a varying local 

background log2 IP/control ratio signal), and then linearly scaled with respect to total log2 

ratio signal. We smoothed the ChIP vs. genome coordinate signal by two rounds of sliding 

window averaging over 300 bp. 

 

Transfrag Calling. Only probes with BLAST cross-hybridization scores < 2.7 were used to 

delineate transcription fragments (transfrags). Watson- and Crick-stranded data were 

analyzed separately (there was apparent cDNA double-stranding activity present in the 

reverse transcriptase used). We first subtracted 1.5× the modal intensity value from each 

probe intensity as an initial background correction step, zeroing negative intensities, and 

extracted all probes of nonzero intensity across whose 50 nt span all probes on the opposite 

strand were of lower intensity − both criteria had to be satisfied in both replicates. This 

procedure generated a list of expressed probes (EPs). Having removed isolated, weakly 

expressed EPs, we merged the remaining ones within 200 nt of each other into type 1 

fragments, merging up to the nearest EP on the opposite strand. For each type 1 fragment, we 

computed the strand-specificity factor (SSF) as the ratio of the mean (replicate-averaged) 

median expression (MME) value of the EPs contained within its bounds to that of the 

corresponding EPs on the opposite strand, updating the SSF and MME after each merging. 

Having removed short type 1 fragments of low SSF, we merged the remaining ones within 



600 nt of each other into type 2 fragments if their MMEs were sufficiently similar, merging 

up to the nearest type 1 fragment on the opposite strand; SSFs and MMEs were updated as 

above. There were two merging exceptions: (1) if the ends of consecutive type 1 fragments 

are located in the same annotated gene, but separated by a single opposite strand EP, they 

were still merged, and (2) mergeable consecutive type 1 fragments were not merged if they 

are separated by an intergenic region containing ≥1 opposite strand EP. We culled type 2 

fragments that were of low MME/low SSR/EP density, were predicted weakly expressed and 

predicted to lie entirely within a predicted antisense gene region, or were apparent “side-

noise” artifacts (short, non-uniform cDNA profiles abutting the 5′ and 3′ ends of highly 

expressed transcripts). Finally, some manual adjustments were made to type 2 transfrag 

boundaries based on visual inspection of the cDNA data, generating a final set of 1815 

transfrags. 

 We identified outlier transfrags by comparing transfrag position to that of known genes 

(Keseler et al., 2005). Outlier transfrags are defined as those that (1) overlap an annotated 

gene by <25% of the gene’s length or (2) overlap an intergenic region by >60% of the 

intergenic region’s length or (3) are antisense totally across or internally to a gene, or, if 

partially antisense, the antisense distance is ≥ 250 nt. 

 

ChIP Peak Calling. For every probe midpoint coordinate (PMC), we located the leftmost 

and rightmost PMCs 150 bp away. If the corresponding triad of log2 ChIP ratios represented 

a turning point in the genomic ChIP profile, we labeled the central PMC as the location of a 

maximum/minimum. Maxima within 300 bp of each other were merged, as were minima; in 

these cases, an average turning point genome coordinate and log ratio were computed. Peak 

height was computed as the larger of (ChIP signal at peak - ChIP signal at left flanking 

trough) and (ChIP signal at peak - ChIP signal at right flanking trough); a peak height 

threshold of 0.8 log2 units was imposed at this stage. We accepted a preliminary peak in 

replicate #1 if there existed a single preliminary peak in replicate #2 called within a window 

of 300 bp centered at the former, computing an average genome coordinate and average peak 

height as the x,y coordinates of the final peak. 

 We split these peaks into bins defined by peak height intervals, i.e. 0.85-0.95, 0.95-

1.05, 1.05-1.15, etc., and determined whether the peak genomic coordinates in each bin were 



enriched in being proximal to the starts of annotated genes (Keseler et al., 2005) relative to 

those coordinates rotated around the chromosomal gene map. Such enrichment is expected to 

be a signature of true σ70/β binding. The Mann-Whitney test was used to evaluate the 

statistical significance of the actual vs. rotated peak-to-gene-start distance distributions. For 

all rotation distances selected, peaks whose log2 heights were 1.25-1.35 were significantly 

closer to gene starts than random data. A peak height threshold of 1.25 was therefore 

selected, yielding a final set of 1286 σ70 and 1032 β ChIP peaks. There is good correlation 

between the raw σ70 and β ChIP peak profiles, the four pairwise σ70-β dataset pairs displaying 

Pearson r values of 0.65, 0.54, 0.65, and 0.65. 57% of σ70 ChIP peaks were within ±300 bp 

of a β ChIP peak (“copeaks”).  A BLAST score was computed for each ChIP peak as the 

fraction of probes with cross-hybridization scores > 2.7 falling within a 600 bp window 

centered at the peak. A BLAST score ≥ 0.15 was considered as potentially problematic − 

15% of σ70 ChIP were of this variety. 

 

Sensitivity-Specificity Analysis. To determine the specificity and sensitivity of ChIP peak 

calling, we performed ROC analysis of our predicted ChIP peak genome coordinates with 

respect to 484 nominally positive control coordinates and the same number of nominally 

negative control coordinates. Positive control coordinates were drawn from all known σ70 

promoters (EcoCyc and RegulonDB; (Keseler et al., 2005; Salgado et al., 2006). In cases 

where such ≥2 sites were clustered, we calculated the length of the cluster as the distance 

between the extreme left and right sites; if this cluster distance was <300 bp, then site 

coordinates were averaged; if not then all sites within the cluster were ignored. (Large cluster 

distances might cause the corresponding σ70 ChIP signal to be too diffuse for defined 

peaking). Negative control coordinates were the midpoint coordinates of the 484 longest 

ORFs in E. coli, i.e., regions where there should be no RNAP binding sites. Note that it is 

highly probable that we are overestimating both the number of positive control binding sites 

– not all these promoters are expected to be active under the experimental conditions 

employed – and the number of negative control sites – at least a few long genes could harbor 

internal transcripts. We computed the distribution of absolute distances between the location 

of each σ70 ChIP peak and its closest positive/negative control coordinate for actual data and 



1 Mb-rotated data. By varying the magnitude of this absolute distance and determining the 

resulting number of positive and negative coordinates falling within that distance from called 

ChIP peaks, we determined the specificity (# true negatives/(# true negatives + # false 

positives)), sensitivity (# true positives/(# true positives + # false negatives)), and false 

discovery rate (# false positives/(# true positives + # false positives)) of peak calling. 

 By inspecting the subset of 484 positive control σ70 sites that were both bound and 

could be unambiguously associated with gene starts (i.e., those starts > 1kb away from any 

other), the called ChIP peak lay between 350 bp upstream to 50 bp downstream of the gene 

start in 93% of cases (and upstream 94% of the time). In 95% of these cases, the distance 

between the known and predicted σ70 binding sites was ±180 bp, with a standard deviation of 

58 bp.  

 

σ70 ChIP Peak Annotation. σ70 ChIP peaks were first divided into σ70-β copeaks − if the 

σ70 peak was within ±300 bp of a β ChIP peak − or orphan peaks. We constructed a 

comprehensive list of all known and predicted transcription start points (TSPs) for E. coli 

from databases and a variety of published studies. TSPs encompass annotated gene start 

codons (Keseler et al., 2005), known and computationally predicted σ70-dependent 

transcription units (TUs) (EcoCyc, RegulonDB (Keseler et al., 2005; Salgado et al., 2006), 

(Bockhorst et al., 2003), transcripts inferred from high-density (although not tiled) 

microarray analysis (Tjaden et al., 2002), as well as known and computationally predicted 

small intergenic RNAs (Argaman et al., 2001; Carter et al., 2001; Chen et al., 2002; Kawano 

et al., 2005; Rivas et al., 2001; Saetrom et al., 2005; Vogel et al., 2003; Wassarman et al., 

2001; Zhang et al., 2003). All feature coordinates were updated to the most recent version 

(U00096.2) of the E. coli MG1655 genome sequence. 

 The goal of the annotation process was to associate each ChIP peak with all TSPs 

within a given distance away. For gene start TSPs, this distance was 350 bp upstream to 50 

bp downstream, and for all other TSPs (i.e., bona fide transcriptional start sites), it was ±160 

bp (see above). Accordingly, 4 annotation classes could be defined. Class A: not associated 

with the 5’ end of a known/predicted gene, e.g., intragenic, between convergently transcribed 

genes, or only associated with computationally predicted small intergenic RNAs; Class B: 

associated with the 5’ end of an annotated gene that is not known or predicted to be 



transcribed by Eσ70; Class C: associated with only 1 known/predicted σ70 promoter; Class D: 

associated with ≥2 known/predicted σ70 promoters. 

 Annotated σ70 ChIP peaks were first classified as being coincident with one of 1111 

reliably called rifampicin ChIP RNAP peaks from (Herring et al., 2005) if the former was 

within ±300 bp of one of the latter. 

 

Melting Temperature Analysis. We extracted every 15th Watson-strand 30-mer of the 

MG1655 genome and computed its melting temperature (Tm) using the program MELTING 

(Le Novere, 2001). We smoothed the chromosomal Tm profile by two rounds of sliding 

window averaging over 300 bp and computed troughs in an exactly analogous way was we 

determined peaks for the ChIP data. We reported the genomic coordinate and temperature 

depth of troughs >2 °C in depth. 

 

ChIP-Transfrag Analysis. To compute traveling ratios (TRs), we selected transfrags with 

the following characteristics: (1) ≥1200 nt in length, (2) had no other transfrag 5′ ends within 

±1.3 kb, (3) had a σ70-β ChIP copeak within ±160 bp (relative to σ70 peak coordinate) from 

its 5′ end and no other  σ70 or β peaks within ±1.3 kb, (4) had the beta peak downstream of 

the sigma peak relative to the strandedness of the transfrag (indicative of active transcription 

(Wade and Struhl, 2004). There were 59 such transfrags (Table S3). For both σ70 and β, we 

then computed the replicate-averaged absolute ChIP signal at the peak (p), at a point 800bp 

upstream − relative to the transfrag − of the peak (u800), and at a point 800bp downstream 

(d800); the TR is computed as (u800-u800)/(p-u800). 800 bp was chosen as this is sufficiently far 

from the promoter that the ChIP signal will be due entirely to elongating RNAP. 

 Retention ratio profiles for σ70 and β ChIP peaks associated with the same set of 59 

transfrags were computed as log10((p-u i) /(p-d i)), for all i = 50, 100, 150, …, 850, 900 bp. 

This ratio will be positive when the peak is skewed in the direction of transfrag transcription. 

(Logarithmic values cannot be determined for negative (p-u i) /(p-d i) ratios). Retention ratios 

were estimated for σ70 assuming stochastic release with a half-life of 7 s and an elongation 

rate of 30 nt/sec by calculating: log10(1/(1-(c*(1-(1/(10R(β))))))) where c is the fraction of σ70 

estimated to associate with elongating RNAP at any given position and R(β) is the retention 

ratio for β at that position. 



 As a statistical control for the above analyses, we selected all σ70-β ChIP copeaks that 

had no other σ70 or β peaks within ±1.3 kb and treated them as if they were associated with 

≥1200 nt Watson-strand transfrags. From the 510 such copeaks thus selected, we extracted 

1000 random subsets of 59 and computed for σ70 and β the TR and the peak skew ratio 

profiles as above. We could them query how many times 1000 random median values of the 

TR value distribution or of the peak skew value distribution were less than the corresponding 

median values of the actual dataset. If 10 or 990 random medians were lower than the actual, 

this would correspond to a p-value of 0.01 for the actual dataset being different from (i.e., 

either greater or less than) a random model.  For σ70, neither the TR nor the peak skew 

distribution medians were significantly different to random at the p = 0.1 level; for β, both 

distribution medians were significantly greater than a random model at a p < 0.001 level. 

 If ≥1 transfrag start(s) were found within ± 300 bp of a σ70 ChIP peak, the 

corresponding transfrags were associated with the peak; if the σ70 ChIP peak was found >300 

nt downstream into a transcript, it was deemed an internal peak. These two classes of peak 

are denoted transfrag-associated (TA) ChIP peaks; the remaining σ70 ChIP peaks are non-TA 

(NTA). 35% of transfrags could not be associated with a σ70 ChIP peak. 

 

Wavelet Analysis. The 1286 σ70 peaks were first culled of any peaks where the fraction of 

probes with cross-hybridization scores > 2.7 falling within a 600 bp window centered at the 

peak was ≥ 15%, thereby yielding 1121 pairs of genome coordinates and associated ChIP 

peak heights. We discretized these peak data into 2.5 kb intervals. Autocorrelation analysis 

demonstrated that there was no correlation between consecutive data points, allowing us to 

use a random permutation of the data as a null model. Wavelet analysis was performed in 

MATLAB using a Morlet wavelet with wavenumber 6. We evaluated the number of times a 

2-D coordinate in the resulting period vs. genome coordinate wavelet gave a higher or lower 

signal than the same coordinate in 1000 similar wavelet analyses of random permutations of 

the data; we took as significant only those 2-D coordinates which scored higher and lower 

across all 1000 times, yielding a p<0.0001 wavelet significance map. To further assess 

statistical significance, we repeated the above analysis with 20 random permutations of the 

data instead of the actual data, in each case generating a corresponding p<0.0001 wavelet 



significance map. In this way, we showed that the ~700 kb-1 periodicity observed in the 

actual wavelet was robust across the 20 data randomizations. 

 

Data Visualization. All annotation, cDNA, and ChIP data was visualized in the program 

SignalMap (Nimblegen) and MATLAB (Math Works). Raw data can be obtained from 

http://arep.med.harvard.edu/~nreppas/RNAP. 
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Figure S1. Receiver Operating Curve 

Sensitivity vs. 1-Specificity (or Receiver Operating Curve) of ChIP peak coordinate calls. 

We first computed the absolute distance between the location of each σ70/β ChIP peak and its 

closest positive control coordinate and, separately, its closest negative control coordinate. For 

all absolute distances between 0 and 10000 bp, we then determined for each how many 

positive and how many negative controls were called in total. Thus the tradeoff between 

specificity and sensitivity was evaluated for σ70 (red) and β (blue) ChIP peak calls. We 

recomputed the corresponding plots for ChIP peak coordinates rotated by 1 Mb around the 

chromosome; as expected, both σ70 (magenta) and the β (lime) rotated ChIP data yield no 

discrimination between positive and negative control coordinates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Figure 2



Figure S2. Periodicity of σ70 binding across the genome. 

Wavelet analysis of discretized σ70 ChIP peak data. Only ChIP peaks in regions with minimal 

cross-hybridization potential were used in this analysis (see Methods). Discretized regions 

with no peak were assigned a ChIP peak height of zero. A Morlet wavelet with wave number 

6 was employed to compute the wavelet plot shown. For each wavelet period vs. coordinate 

pixel, we calculated the number of times the wavelet signal was higher in the actual dataset 

than that for 1000 randomly permuted ChIP peak datasets. In black are those pixels where the 

actual signal was lower than random and in white where the actual signal was higher than 

random for all 1000 randomizations; grey shades represent intermediate significance. 

Significance plots were recomputed using 20 randomly permuted datasets as the actual data; 

this demonstrated that the ~700 kb-1 period centered at approximately 1.6 Mb at a wavelet 

significance level of p < 0.001 had an associated false discovery rate of < 5%. 
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Figure S3. Representative smoothed ChIP-chip profile of β and ChIP/quantitative PCR 

validation. 

(A-C) Averaged, smoothed log2 ChIP-chip profile (blue line) of β at the (A) hepA, (B) deoB, 

and (C) yjiT genes plotted against genome position. Genes are indicated by gray arrows. 

Association of β was also determined using ChIP and quantitative PCR at the promoter and 

distal coding sequences of each gene. These association values are shown as empty squares 

positioned at the center of the corresponding PCR product. ChIP association values are 

normalized to binding in the bglB coding sequence, background subtracted, and plotted 

relative to binding to a region within the rDNA locus. Error bars represent one standard 

deviation from the mean. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



-200 0 200 400 600 6100 6300

+ rif
- rif

Position Relative to +1

0

0.5

1.5

1

2
oppABCDF

R
el

at
iv

e
O

cc
up

an
cy

A

adhEB

rrnC

oppABCDF

R
el

at
iv

e
O

cc
up

an
cy

D

adhEE

rrnF

-200 0 200 400 600 6100 6300
Position Relative to +1

0

0.5

1.5

1

2

0 200 400 600 1300 1500

R
el

at
iv

e
O

cc
up

an
cy

Position Relative to +1

0

0.5

1.5

1

2

0 200 400 600 1300 1500

R
el

at
iv

e
O

cc
up

an
cy

Position Relative to +1

0 200 400 600 3400 3600

R
el

at
iv

e
O

cc
up

an
cy

Position Relative to +1

0

0.5

1.5

1

2

0 200 400 600 3400 3600

R
el

at
iv

e
O

cc
up

an
cy

Position Relative to +1

0

0.5

1.5

1

2

0

0.5

1.5

1

2

+ rif
- rif

+ rif
- rif

+ rif
- rif

+ rif
- rif

+ rif
- rif

Supplementary Figure 4



Figure S4. High-resolution mapping of β at three transcribed regions. 

(A+D) Relative occupancy values for β at indicated positions throughout the oppABCDF 

operon before (black diamonds) and following (white squares) rifampicin treatment. 

Positions are indicated relative to the transcription start point. Values are normalized to bglB 

coding sequence and plotted relative to the value at the most upstream position. 

(B+E) Relative occupancy values for β at indicated positions throughout the adhE gene 

before (black diamonds) and following (white squares) rifampicin treatment. Positions are 

indicated relative to the transcription start point. Values are normalized to bglB coding 

sequence and plotted relative to the value at the most upstream position. 

(C+F) Relative occupancy values for β at indicated positions throughout the rDNA locus 

before (black diamonds) and following (white squares) rifampicin treatment. Positions are 

indicated relative to the transcription start point. Values are normalized to bglB coding 

sequence and plotted relative to the value at the most upstream position. (A-C) show data 

collected from cells grown in M9 minimal media at 30 °C. (D-F) show data collected from 

cells grown in LB media at 37 °C. 

Error bars represent one standard deviation from the mean. 
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Figure S5. High-resolution mapping of σ70 and β at the rDNA locus. 

(A) Relative occupancy values for σ70 at indicated positions throughout the rDNA locus 

before (black diamonds) and following (white squares) rifampicin treatment. Positions are 

indicated relative to the transcription start point. Values are normalized to bglB coding 

sequence and plotted relative to the value at the most upstream position. 

(B) Relative occupancy values for β at indicated positions throughout the rDNA locus before 

(black diamonds) and following (white squares) rifampicin treatment. Positions are indicated 

relative to the transcription start point. Values are normalized to bglB coding sequence and 

plotted relative to the value at the most upstream position. 

Error bars represent one standard deviation from the mean. 

 




