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Colony formation in soft agar is the gold-standard assay for cellular
transformation in vitro, but it is unsuited for high-throughput
screening. Here, we describe an assay for cellular transformation
that involves growth in low attachment (GILA) conditions and is
strongly correlated with the soft-agar assay. Using GILA, we describe
high-throughput screens for drugs and genes that selectively inhibit
or increase transformation, but not proliferation. Such molecules
are unlikely to be found through conventional drug screening, and
they include kinase inhibitors and drugs for noncancer diseases. In
addition to known oncogenes, the genetic screen identifies genes
that contribute to cellular transformation. Lastly, we demonstrate
the ability of Food and Drug Administration-approved noncancer
drugs to selectively kill ovarian cancer cells derived from patients
with chemotherapy-resistant disease, suggesting this approach may
provide useful information for personalized cancer treatment.
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For nearly 50 y (1, 2), the gold-standard assay for cellular
transformation/tumorigenicity has been the soft-agar assay.

This classic assay requires that cells grow in an anchorage-
independent manner, a hallmark of cancer cells, but not normal
cells; it was a significant improvement over earlier assays that
involved growth in suspension on “bacterial” plates. Importantly,
growth in soft agar is strongly correlated to tumorigenicity in
animals, typically mouse xenografts. Compared with cells grown
in 2D monolayers attached to plates, such 3D growth conditions
more accurately reflect the natural environment of cancer cells
(3) and are crucial to be performed before animal studies (4, 5).
However, the soft-agar assay is slow, labor-intensive, imprecise,
inconsistent because of subjective definitions of colonies, and not
suitable for high-throughput screens. Unlike nontransformed
cells, transformed cells can grow in multiwell plates that are
coated with poly(2-hydroxyethyl methacrylate) (poly-HEMA)
that prevent cell attachment to the surface (6). However, it is
unclear whether growth on such low-attachment plates is com-
parable to the soft-agar assay, because few cell lines were tested
and quantitative analysis was not described.
Although it is well recognized that different culture plate surfaces

promote distinct growth characteristics of malignant and nontrans-
formed cells, drug and genetic screens are routinely performed on
standard plates that permit efficient attachment. While this work
was in progress, a proof-of-principle screen of 89 known anticancer
compounds involving the comparison of growth on low- and high-
attachment plates was described (7). However, this study did not
screen unknown drugs, nor did it describe the use of low-attachment
plates for genetic screens. In addition, this study used nontrans-
formed and transformed cell lines, not cells from cancer patients.
Every person’s cancer is different with respect to the con-

stellation of mutations, methylated tumor suppressor genes, and
epigenetic states. As a consequence, the phenotype of every in-
dividual cancer is unique, particularly the response of a patient
to drugs. As such, we and others have been interested in

developing methods for personalized medicine, in which tumor
cells from individual patients are tested for sensitivity to a panel
of drugs. Furthermore, many drugs that are in clinical use for
other diseases (e.g., metformin for diabetes, various antiin-
flammatory drugs, simvastatin for heart disease) have anticancer
effects in vitro (8) and, hence, have the potential to be repur-
posed for treating cancer patients. For these reasons, we wish to
screen patient-derived tumor cells for their response to a variety
of Food and Drug Administration (FDA)-approved drugs by
using an assay that is specifically relevant for cancer cells.
Here, we describe a modified assay in which growth in low at-

tachment (termed GILA) is quantitated by measuring ATP in
permeabilized cells. We demonstrate that GILA is a rapid and
quantitative assay for cellular transformation that correlates
strongly with the soft-agar assay. We perform high-throughput drug
and genetic screens for drugs or genes that, respectively, inhibit or
increase transformation. Lastly, we identify drugs that selectively
inhibit the growth of fresh, patient-derived ovarian cancer cells that
are refractory to conventional chemotherapeutic treatment, in-
dicating the potential of this approach for personalized medicine.

Results
The GILA Assay Is Comparable to the Soft-Agar Assay for Cellular
Transformation. The principle of GILA is that transformed cells
can grow on low-attachment plates, whereas nontransformed
cells cannot. A critical parameter for the GILA assay is cell density
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(number of cells per well), and this density needs to be determined
empirically. For the cell lines used here, this density was optimized
at 1,000 cells per well in 100 μL of medium for 96-well plates or 50
cells per well in 30 μL of growth medium for 384-well plates. We
examined 13 cell lines originating from four different tissues—
fibroblast, breast, ovary, and prostate (Fig. S1). An equal number
of cells from each line were seeded into wells of an ultralow
attachment 96-well plate, grown for 5 d, and assayed for ATP
levels as a surrogate for number of viable cells. As expected, the
transformed cells grew significantly better than nontransformed
cells (Fig. S2), with 5- to 30-fold increased ATP levels (Fig. 1).
To examine whether GILA was comparable to the soft-agar

assay, we performed soft-agar assays on the same cell lines. As
expected, a large number of big colonies developed from trans-
formed cells, whereas nontransformed cells generated few small
size colonies and mostly individual resting cells (Fig. S2). When
transformation values of both assays were plotted, the linear
correlation coefficient value is 0.68 (Fig. 1), a strong correlation
indicating that GILA and the standard soft-agar assay are es-
sentially comparable assays for transformation.

The GILA Assay Specifically Measures Cellular Transformation. To
confirm that GILA is a measure of transformation and not simply
growth per se, we compared the growth of cells as a monolayer on
a traditional high-attachment surface to 3D growth in the GILA
assay (Fig. 2). Proliferation rates on high-attachment conditions
correlate poorly with those on low-attachment conditions (R2 =
0.12). In fact, with the exception of fibroblasts, nontransformed
cells grow faster than transformed cells on high-attachment con-
ditions, the opposite situation from low-attachment conditions
(Fig. S3). These observations indicate that GILA specifically
measures oncogenic capacity of transformed cell lines inde-
pendently from the proliferation rate.

A GILA-Based Drug Screen in Transformed Fibroblasts Identifies
Antineoplastic Compounds Overlooked by a Conventional Screen.
Most high-throughput screens for small molecules or genes
that have antitumorigenic or protumorigenic roles are performed
under standard growth conditions on high-attachment surfaces.
As such, the candidates passing these screens may inhibit or
enhance general proliferation but not necessarily have a specific

effect on transformation or cancer cells. To identify drugs spe-
cifically inhibiting the oncogenic state of fibroblasts transformed
with Harvey Rat Sarcoma viral oncogene homolog (H-RAS) (9),
we used GILA as a primary screen and growth on standard high-
attachment plates as a counterscreen. Drugs specifically affecting
the transformed state would inhibit anchorage-independent
growth as assayed by GILA, but have little effect on high-
attachment conditions.
Among the 633 kinase inhibitors and FDA-approved drugs

screened, we identified 10 compounds that significantly inhibit cell
growth in the GILA assay, while having a less pronounced in-
hibitory effect on the high-attachment surface (Fig. 3A and Fig.
S4). These 10 compounds were subject to a validation (secondary)
screen. Four drugs inhibited cell growth exclusively in the GILA
assay, five drugs preferentially inhibited growth in low-attachment
conditions will small inhibitory effects on high-attachment growth
(∼20% reduction), and one drug inhibited growth to comparable
extents in high- and low-attachment conditions (∼50% reduction).
These drugs would probably have been ignored in a conventional
screen for growth, but their ability to inhibit growth on low-
attachment surfaces (reduction of 20–80% at the concentrations
tested) make them interesting candidates with specific antineo-
plastic activity (Fig. 3B). As expected, the five candidate drugs
tested inhibit colony formation in the soft-agar assay (Fig. 3C).
Drugs used for treatment of diabetes, atherosclerosis, and

inflammatory disease often inhibit transformation and tumor
growth, and these diseases have similarities in their transcrip-
tional signatures (8). In this regard, five of the top hits from our
drug screen have never been shown to play a role in cancer and,
hence, might be interesting candidates to repurpose for cancer
therapy. In contrast, three drugs (calcipotriol, sibutramine, and
nitazoxanide) have targets that affect pathways that overlap with
cancer-related pathways (10). For example, the antiviral drug
nitazoxanide suppresses IL-6 (11), a cytokine frequently linked
to carcinogenesis. Lastly, a kinase inhibitor (STK855495) in-
active in other cell-based assays to date inhibits cellular trans-
formation and, hence, is of interest for further study.

Patient-Derived Ovarian Cancer Cells Are Sensitive to FDA-Approved
Drugs Identified in the GILA-Based Screen. To test whether drugs
identified and validated in the drug screen had antineoplastic

Fig. 1. Correlation between soft agar and growth in low-attachment assay.
Scatter diagram of transformation values for transformed (black diamonds)
and nontransformed (open circles) cells as obtained from both SA and GILA as-
says. Each point represents three independent repeats of each assay for cell line.

Fig. 2. Anchorage-dependent growth of cells is not correlated to anchor-
age-independent growth. Proliferation values of viable cells after 5 d of
anchorage-dependent growth and the transformation values of these cells.
Note that four of the top five rapid growing lines are nontransformed cell
lines (open circles), whereas most of the transformed lines (black diamonds)
show slower proliferation. Each experiment had three independent repeats.
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activity in the context of human disease, we isolated fresh, as-
cites-derived ovarian cancer cells from five patients who had
failed multiple lines of treatment (Fig. S5). Immediately after
procurement, ascites samples were processed and 5,000 cells per
well were flow-sorted into 96-well microtiter plates with low- or
high-attachment surfaces containing 100 μL of growth medium
per well. These ex vivo cultures were treated individually with four
drugs identified and validated in the drug screen (azelastine hy-
drochloride and nitazoxanide, RepSox, or nobiletin) for 72 h. Two
compounds, azelastine hydrochloride and nitazoxanide, demon-
strated inhibitory activity in the GILA assay (Fig. 4A), with a dose-
dependent response shown for azelastine hydrochloride (Fig. 4B).
Interestingly, cancer cells from the various patients displayed
differential sensitivity to these drugs. These results validate ex vivo
GILA-based drug screens as a potential tool for drug discovery
and repurposing to individually treat cancer patients who have
failed to respond to conventional treatment.

A Genome-Scale ORF Screen Identifies Genes That Specifically
Increase Transformation. We used GILA in a genetic screen for
oncogenes by introducing a barcoded library of lentiviruses
overexpressing protein-coding regions (18,000 clones representing
14,000 genes) into MCF-10A, a nontransformed breast cell line
(12). Upon integration of the lentiviruses into the genome via
puromycin selection, the resulting mixture of cells was grown for
5 d in flasks either with high-attachment or low-attachment sur-
faces. Representation of individual expressed genes in the result-
ing cell populations was determined via the barcodes. In principle,
lentiviruses expressing oncogenes should yield preferential repre-
sentation in the low-attachment vs. high-attachment populations.
Two observations validate both GILA and the genetic screen.

First, the top hits are the well-known oncogenes H-Ras, K-Ras,
and EGFR. Second, kinases, receptors, and signaling pathways
linked to cancer are identified by gene-set enrichment analysis of
the entire dataset based on rank-ordered barcode ratios from
low:high attachment conditions (Fig. 5A and Fig. S6). In con-
trast, no gene sets are enriched when the genes of the dataset are
ranked in inverse (high:low attachment) order.
To individually examine the oncogenic effect of individual

genes more directly, MCF-10A cells were infected individually
with lentiviruses overexpressing 62 candidate genes from the
genetic screen, and the resulting stable cell lines tested for
growth in high- and low-attachment conditions (Fig. 5B). As
expected, cell lines overexpressing H-Ras, K-Ras, or EGFR grow

much better in low- but not high-attachment conditions than the
parental cell line, confirming their oncogenic properties. In ad-
dition, cells overexpressing MRPL20 or AKT2 grow preferen-
tially in low- vs. high-attachment conditions (P < 0.001; Fig. S7);
a few other genes (MAP3K3, EIF4E, PPP1R8, and C3orf62)
may behave similarly (P ∼ 0.02). Although not previously char-
acterized as an oncogene, MRPL20 expression levels are part of
a 16-gene principle components predictive of breast cancer risk
(13). Although differences between growth in low vs. high at-
tachment are modest for these genes, the results suggest that at
least of some of them (and perhaps others implicated in the gene-
set analysis) can make minor contributions to the oncogenic state.
By analogy, deep sequencing on many cancer genomes reveals

Fig. 3. GILA for screening small molecules for antineoplastic activity. (A) Kinase inhibitors and FDA-approved drugs were screened for their ability to affect
transformed cells growing either on high- or low-attachment surface. Among the 633 drugs, 10 drugs (circled) were found to be selectively effective against cells
that were growing on a low-attachment surface. Control cells are marked in black. (B) Secondary screen to the 10 hits confirmed the specific inhibitory role of the
compounds in anchorage-independent growth (GILA). (C) Validation of candidate drugs in transformed cells by the soft-agar assay. (Scale bar: 250 μm.)

Fig. 4. Ex vivo drug sensitivity. (A) Representative results of drug activity of
compounds established in initial drug screen in ex vivo GILA of ovary cancer
patient-derived cells. Azelestine hydrochloride was found to be highly
effective at inhibiting growth of these cells. (B) Azelestine hydrochloride
concentration-dependent viability of ovary cancer patient-derived cells.
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many cancer-promoting or cancer-suppressing genes that in-
dividually make a minor contribution.

Discussion
GILA as a Replacement for the Soft-Agar Assay. The ability of cells
to grow in soft agar is the gold standard and defining assay for
cellular transformation that has been in routine use for decades.
In principle, the GILA assay, which also requires cells to grow in
an anchorage-independent manner under conditions of low at-
tachment, should be similar to the soft-agar assay. By analyzing a
variety of developmentally different cell lines, we show that the
GILA assay is comparable, both qualitatively and quantitatively,
to the classic soft-agar assay. We cannot exclude the possibility
that these assays might give different results in other cell or
cancer types, but these results are likely to be subtle because
both assays are essentially measuring the same property of cell
growth. We note that hematopoietic cells might not be suitable
for GILA, because they do not require attachment for cell
growth. Compared with the classical soft-agar assay, GILA is
much faster (5 d instead of 3 wk), much less labor-intensive
(essentially no work beyond seeding cells into wells), more
practical (takes up less space in tissue culture incubators), more
quantitative, and easier to score by using conventional plate
readers. For these reasons, we strongly believe that GILA can
replace the soft-agar assay to monitor cellular transformation.
Conceptually, it is useful and common in the cancer field to

consider cells to exist in two distinct states, nontransformed or
transformed, with these states being determined experimentally
by the soft-agar assay. In reality, cellular transformation and
cancer is not a single cellular state, but rather encompasses a con-
tinuum of phenotypes between the extremes of nontransformed and
transformed states. The quantitative nature of the GILA assay is
useful in this regard, because transformed cells can vary significantly
in how well they grow on low-attachment conditions. Thus, the
GILA assay can measure the degree of transformation for cell lines
subjected to experimental perturbations on a population basis,

something that is more difficult and more arbitrary to do with the
soft-agar assay. However, the soft-agar assay, which measures col-
ony formation from individual cells, is better equipped to analyze
heterogeneity in the cell line, and in this regard, only a small per-
centage of cells in a typical transformed cell lines are capable of
colony formation.

GILA for High-Throughput Drug and Genetic Screens. In addition to
its advantages over the standard soft-agar assay for analyzing a
limited number of cell lines and experimental perturbations, the
GILA assay is suitable for high-throughput drug or genetic
screens. Unlike screens relying on growth of cancer cells per se,
GILA conditions are more specific and relevant to the trans-
formed state, because they depend on a property of cancer cells
that is not shared by normal or nontransformed cells. Further-
more, the combination of a GILA-based screen with a secondary
screen that measures growth under conditions of attachment of-
fers additional advantages. For example, drugs that inhibit growth
in the GILA assay but not under standard conditions would be
missed by a conventional screen, yet they are of potential interest
as anticancer agents. Conversely, drugs that inhibit growth under
both conditions may just be generally toxic to cells, although such
drugs could still be valuable as potential therapeutic targets if they
don’t inhibit the growth of normal cells.
For genetic screens, it is of particular interest to identify genes

that specifically inhibit or stimulate transformation in a manner
that is distinct from cellular proliferation. However, genes that
increase growth under both low- and high-attachment conditions
may also be relevant for cancer. In addition to identifying known
oncogenes (H-Ras, K-Ras, and EGFR) and unexpected genes
(MRPL20), an advantage of the genetic screen performed here is
the ability to identify candidate genes that may make minor
contributions to the transformed state. As such, this approach
complements large-scale sequencing of cancer genomes that
identifies genes that make minor contributions to human cancer.
Coherent groups of genes making minor contributions can be
identified through gene-set enrichment analysis, and these genes
are likely to reflect important pathways involved in the trans-
formed or nontransformed states. One disadvantage of the
GILA assay is that it is difficult to select rare transformed cells
from a population of nontransformed cells. In contrast, colonies
arising from individual rare transformed cells can be selected by
using the soft-agar assay.

The GILA Assay in the Context of Personalized Medicine. Because
every cancer is genetically, epigenetically, and phenotypically
distinct, it is now well recognized that cancer treatment needs to
be personalized. Furthermore, many drugs in clinical use for
other diseases (e.g., diabetes, various inflammatory conditions,
heart disease) have anticancer effects in vitro (8) and, hence,
have the potential to be repurposed for treating cancer patients.
For example, epidemiological data and preclinical experiments
suggest the use of diabetes drug metformin for cancer prevention
and treatment in nondiabetics (14–16), and clinical trials are in
progress. For these reasons, we have initiated a phenotypic ap-
proach to personalized medicine in which patient-derived tumor
cells will be screened for their response to a variety of FDA-
approved drugs. In principle, FDA-approved drugs that inhibit
specific cancer cells from a patient could be used off-label, in-
dividually or in combination, to treat that patient. This pheno-
typic approach is complementary to a genetic approach that uses
DNA sequencing of a patient sample to identify putative onco-
genes that confer sensitivity to drugs designed to specifically
inhibit the identified oncoprotein.
The GILA assay is ideal for this personalized medicine ap-

proach, and as a proof of principle, we used it to examine cells
from patients with ovarian cancer that did not respond to con-
ventional chemotherapeutic treatment. We identified distinct

Fig. 5. Genetic screen for ORFs with oncogenic role in MCF-10A cells.
(A) Overrepresentation of 181 barcoded ORFs under low attachment (dark
gray shaded region on left) or 201 ORFs under high-attachment (black shaded
region on right) conditions. (B) Validation of chosen ORFs by growth on low-
and high-attachment surfaces. The ORFs show an increased (>1) growth in
low attachment over time and a preferred growth in low attachment over
growth on high-attachment surfaces (value of GILA/High-attachment ratio
larger than 1). Values are fold changes of growth at day 0 to day 5.
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drug sensitivities in different patients in this limited study, and it
should be straightforward to analyze most FDA-approved drugs
(∼500). Once potential drugs are identified, it would also be
straightforward to examine the dose–response as well as com-
binatorial effects.
For this approach, it is critical that patient-derived cancer cells

survive (and potentially grow) long enough for drug sensitivity to
be assayed. In this regard, the GILA assay can be performed in a
few days immediately after isolation from the patient. However,
many cancer cells isolated from patients survive poorly outside
the human body, so it is likely that some human cancers will not
be amenable to this approach. For this reason, extending this
approach to other cancer types may require experimental mod-
ifications (e.g., growth conditions, number of cells, length of
incubation) that can only be addressed empirically. In addition,
tumor samples invariably contain normal cells that may compli-
cate the analysis, particularly if they survive or even grow better
than the malignant cells from the tumor. This problem can be
addressed by enriching for the tumor cells (typically by cell
sorting) and/or measuring specific markers instead of ATP, but
again the details and success will vary among different cancer
types. Nevertheless, our limited experiments clearly show the
potential of this approach, and it is likely that it will be useful for
some, and perhaps many, forms of human cancer.

Materials and Methods
Cell Culture. The nontransformed breast cell line MCF-10A (12) was grown in
DMEM/F12 medium supplemented with 5% (vol/vol) donor horse serum,
20 ng/mL epidermal growth factor, 10 μg/mL insulin, 0.5 μg/mL hydrocorti-
sone, 100 ng/mL cholera toxin, and antibiotics (penicillin/streptomycin) (17).
Other breast cell lines (T47D, MDA-MB-231, and MDA-MB-486) were grown
in DMEM media, 10% (vol/vol) FBS, and antibiotics. The three BJ fibroblast
lines (EH, EL, ELR) were cultured in KO-DMEMmedia, 15% (vol/vol) FBS, 16.5%
(vol/vol) Medium 199, 3.5 mM L-glutamine, and antibiotics (9). Nontrans-
formed WI-38 lung fibroblasts were grown in Eagle’s MEM supplemented
with 10% (vol/vol) FBS and antibiotics. Not transformed (BPH1) and trans-
formed (PC3) prostate cell lines were maintained in RPMI 1640 medium
supplemented with 10% (vol/vol) FBS and antibiotics (18). Three subcloned
cell lines from human ovarian cancer primary cells were maintained in
KO-DMEM media, 15% (vol/vol) FBS, 16.5% (vol/vol) Medium 199, 3.5 mM
L-glutamine, and antibiotics. SAA1 is a cell line with a low-grade trans-
formation value, SAA2 is a mild-grade, and SAA3 has the highest trans-
formation value, as assessed in vitro and in vivo. Unless otherwise mentioned
(Acknowledgments), cells were purchased from the American Type Culture
Collection. All cells were grown in a 5% CO2-humidified incubator at 37 °C.

Soft-Agar Assays. Cells (105 per well) were mixed with 0.4% agarose in
growth medium, plated on top of a solidified layer of 0.5% agarose in
growth medium, in a 24-well plate, and fed every 3 d with growth medium.
After 3–4 wk, the colonies were dyed with Cristal Violet (0.01% solution),
washed with PBS, and imaged by using a custom, automated plate imager
with a digital camera (Olympus SP-350; Cam2Com) (19). A custom MATLAB
program was developed to first detect each well in the plate, based on Canny
edge detection and morphological post processing. Colonies were detected
within each well by using the wavelet transform-based detection algorithm
(20). Image pixel sizes were calibrated by relating user input of the physical
size of the plate to the detected spacing between wells in image space. This
calibration was used to calculate colony area in square microns and to calcu-
late equivalent radii. This calculation produced both net colony density for
each well.

GILA Assay and Drug Screens. Transformed fibroblast cells were maintained as
subconfluent monolayers, trypsinized, and seeded in 96-well plates (for
analytical assays; Fig. 1) or in 384-well white plates (for screens; Fig. 3). For
many experiments, the cell concentration was optimized to 1,000 cells per
well in 100 μL of medium (for 96-well plate) or 50 cells per well in 30 μL of
growth medium (for 384-well plate). However, other applications such as
growth of cells from patient tumors or alternative growth media may re-
quire optimization of cell number and assay time. Two types of plates were
used in the screens: high-attachment conditions (Corning; 3704) and Ultra
Low-attachment (Sumitomo; PrimeSurface384U). Cells were seeded auto-
matically by using the liquid rapid dispenser Metrix WellMate (Thermo). Two

small molecule libraries (NIH Clinical Collection 1–2013 and Kinase Inhibitor
Focused Library) were transferred to each microplate, at 100 nL of drug per
well, to a final concentration of 30 μM or 10 μM, respectively, by using the
robotic transfer system (Seiko Epson) and pin array (V&P). Controls were
added by multichannel pipette. After 5 d of incubation at 37 °C in 5% CO2,
the cells were assayed for ATP content. Each plate had a duplicate, and the
entire screen was repeated two times. The secondary screen was conducted
similarly, except that an HP D300 Digital Liquid Dispenser and T8 dispense-
heads (HP) were used to add four different concentrations of small mole-
cules to the cells.

Cell Viability Assay. Cell viability was measured with the CellTiter-Glo
(Promega) luminescent assay, using the EnVision Plate Reader (PerkinElmer)
or the SpectraMax M5 Multi-Mode Microplate Reader (Molecular Devices).
For high-attachment growth, tissue culture-treated 96-well clear plates (3997;
Corning) were used, whereas for the GILA assay, low-attachment surface
plates (3474; Corning) of 96-well clear plateswere used for 3–5 d. Later, the cells
were moved to 96-Well Solid White Polystyrene Microplate (3362; Corning) for
reading luminescence signal. To avoid bleeding of luminescence between the
wells, every other well was left empty in the solid white microplate. Thirty
microliters of CTG reagent was used for 384-well microplates, and 100 μL for
96-well microplates. The cells were moderately shaken for 5 min in the re-
agent, followed by incubation for 20 min to ensure cell lysis. No background
signal was detected from wells containing only culture medium.

Identification of Hits from the Drug Screen. Cross-talk corrected values from
EnVision reader were used to normalize the luminescence from each wells.
Negative control values were used to calculate the Z score for each well in each
replicate, with the formula (Luminesence – average of negative control)/SD of
negative control. Z score values were graded strong (S), moderate (M), or weak
(W), where −5 > S, −5 >M > −4.5, and −4.5 >W > −3.2. To be considered a hit,
a drug had to score positive in one of replicates on the low-attachment plates
and to score negative in the high-attachment condition. Finally, the selected
hits had to have a ratio of luminesce (low/high attachment) <0.25.

Patient Samples. Under an institutional review board approved protocol,
freshly discarded ascites from patients with advanced stage ovarian cancers
was collected from five individuals. Ascites fluid was immediately transferred
on ice for further processing. Samples were spun down, and red blood cells
were removed with hypotonic lysis by using ACK lysing buffer (Life Tech-
nologies). Cells were filtered through a 40-μm mesh and washed in PBS with
2% (vol/vol) FBS and subjected to staining for FACS.

Flow Cytometry. Cells were prepared per standard protocols, stained with
Calcein-AM, CD45-FITC, EPCAM-PE, and CD24-PE/Cy7, and incubated for
20 min on ice. Cells were washed with FBS with 2% (vol/vol) FBS before
flow sorting. After doublet discrimination and compensation for spectral
overlap, single, viable cells, negative for CD45 and positive for EPCAM
and CD24, were flow-sorted into wells (96-well plates) and prepared with
growth medium. Samples were sorted on a BD FACSAria SORP and analyzed
by using BD FACSDiva Software (BD Biosciences).

Oncogenic ORF Screen.MCF-10A cells were infected with a library of barcoded
ORFs (21) at a low (<1) multiplicity, with an average of 1,000 cells per ORF
clone, and infected cells were selected with puromycin for 5 d. Genomic DNA
samples were taken from the resulting cells and noted as early time point
(ETP). These cells were then seeded into two types of flasks with different
surfaces—traditional high attachment (430641; Corning) or ultralow at-
tachment (3814; Corning) and grown for an additional 5 d. Following ge-
nomic DNA preparation, PCR was performed to amplify the barcode,
followed by Illumina sequencing of the product to determine the relative
abundance of each ORF in the different attachment conditions. Genes of
interest were identified as having significantly different representation (by
sequence reads) from libraries from the low-attachment condition as op-
posed to the high-attachment condition.

A secondary validation screen was performed on 62 genes selected from
the primary screen by using the following criteria: values of GILA over high-
attachment growth > 1.5 fold; expression values consistently up-regulated >
1.2-fold and Poisson test P value < 1e−4 (∼ Benjamini Hochberg corrected
FDR 0.01). We furthermore required that the ORF-encoding genes should be
well expressed in breast tissues, using RNA-sequencing data from the
Cancer Genome Atlas database (22). For each gene to be tested, the ap-
propriate lentivirus expressing this gene was infected into MCF-10A cells,
and infected cells were selected with puromycin for 5 d. The resulting cells
were tested in 96-well low- and high-attachment plates and assessed by
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the cell viability assay described above. Statistical significance for oncon-
genic behavior of individual genes was determined with respect to the
normalized distribution of tested targets centered on a trimmed mean, a
conservative approach.
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